NRL Develops Technique To Speed Detection Process

February 15, 2010

(PhysOrg.com) -- Researchers at the Naval Research Laboratory are developing a device to enable rapid detection and identification of bacteria, chemicals, and explosives in the environment or on the battlefield.

The new device, called the Swept Wavelength Optical resonant-Raman Device (SWOrRD), illuminates a sample with a sequence of as many as 100 wavelengths and measures the spectrum of light scattered from the sample at each laser wavelength. The assembly of scattered light-spectra constitutes a two-dimensional (2D) signature of the sample from which the components of the sample can be determined, with an appropriate algorithm. A code to perform an identification in near real-time is also being developed at NRL.

According to NRL's Dr. Jacob Grun, the research team leader, "When the laser wavelengths resonate with chemical bonds of the sample being examined, then light scattered at each wavelength contains additional information about the sample's identity. The 2D signature, rich in such information, helps to identify the sample's components even when a number of different chemicals or bacteria are mixed within that sample, as they normally would be in the environment or battlefield. This is much more difficult to do if only a single laser is used for illumination. SWOrRD also opens the possibility that a single detector can be used to identify biological agents as well as chemicals and explosives."

The new technique has both civilian and military applications. Potential uses include rapid screening in hospital, public health, food and water safety, decontamination, and border security applications. For military applications, the ability to quickly detect and identify multiple threats with a single device that has a minimal supply chain and that can be reprogrammed in the field to adjust to unexpected threats is crucial for protection of troops in the field. The technique also provides a test bed on which simpler devices suitable for large-scale deployment, utilizing few laser wavelengths, can be designed and evaluated.

During their studies, the NRL research team measured 2D spectra of five bacterial species and five explosives and showed the distinguishability of the signatures. The team was able to show that with similar RNA sequences were distinguishable by this method. The team then used the new technique to measure 2D signatures of potential environmental interferents, also with positive results.

Explore further: Super-sensitive explosives detector can detect explosives at distances exceeding 20 yards

Related Stories

Tiny spectrometer offers precision laser calibration

May 11, 2007

A tiny device for calibrating or stabilizing precision lasers has been designed and demonstrated at the National Institute of Standards and Technology. The prototype device could replace table-top-sized instruments used for ...

ORNL nanoprobe creates world of new possibilities

July 15, 2004

A technology with proven environmental, forensics and medical applications has received a shot in the arm because of an invention by researchers at the Department of Energy's Oak Ridge National Laboratory. ORNL's nanoprobe, ...

FLASH Imaging Redux: Nano-Cinema is Born

July 8, 2008

Flash imaging of nanoscale objects undergoing ultrafast changes is now a technical possibility, according to a recent paper published in the June 22 edition of Nature Photonics. The results are a direct precursor to research ...

Laser Goes Tubing for Faster Body-Fluid Tests

April 2, 2007

University of Rochester researchers announce in the current issue of Applied Optics a technique that in 60 seconds or less measures multiple chemicals in body fluids, using a laser, white light, and a reflective tube. The ...

Recommended for you

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

New imaging technique peers inside living cells

November 16, 2017

To undergo high-resolution imaging, cells often must be sliced and diced, dehydrated, painted with toxic stains, or embedded in resin. For cells, the result is certain death.

The stacked color sensor

November 16, 2017

Red-sensitive, blue-sensitive and green-sensitive color sensors stacked on top of each other instead of being lined up in a mosaic pattern – this principle could allow image sensors with unprecedented resolution and sensitivity ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.