Second plant pathway could improve nutrition, biofuel production

Mar 31, 2010 by Brian Wallheimer

Purdue University scientists have defined a hidden second option plants have for making an essential amino acid that could be the first step in boosting plants' nutritional value and improving biofuel production potential.

The amino acid phenylalanine is required to build proteins and is a precursor for more than 8,000 other compounds essential to plants, including lignin, which allows plants to stand upright but acts as a barrier in the production of cellulosic ethanol.

It had been believed that plants could use two pathways to create phenylalanine. Natalia Dudareva, a professor of , and Hiroshi Maeda, a postdoctoral researcher in Dudareva's laboratory, have confirmed that while plants predominantly use one pathway, they have another at their disposal. The existence of this second pathway might one day allow scientists to increase a plant's production of the essential amino acid. Their research was published in the early online version of the journal .

"That would allow us to increase the of some food," Maeda said. "But also by increasing these compounds, the plants would be better able to protect themselves from changes in the environment."

Maeda added that reducing phenylalanine could lead to a reduction of lignin in plants, which would improve digestibility of for .

Phenylalanine is one of the few essential that humans and animals cannot synthesize, so it must come from plants. It is produced when sugars enter a plant's shikimate pathway, which creates a link between the processing of sugars and the generation of aromatic compounds. The next steps had not been known until now, and were thought to involve one of two proposed routes - the phenylpyruvate or arogenate pathways.

Dudareva and Maeda found a gene responsible for phenylalanine production, and suppression of the knocked out 80 percent of the phenylalanine content in petunias. The hypothesis was that the gene suppression would act like a clogged pipe, creating an abundance of compounds that would have later become phenylalanine in a normal plant.

But that's not what happened.

"These plants knew that the last step of phenylalanine production was down and slowed the first steps," Dudareva said.

Maeda said the plant created some sort of feedback mechanism that slowed down the entry point of the shikimate pathway.

Dudareva and Maeda wanted to see what would happen if they forced the shikimate pathway to function, so they gave the petunias shikimic acid. The plants were flooded with the upstream compounds as expected, but since they could not use the usual arogenate pathway to convert them to phenylalanine, they used another path that scientists had only theorized existed.

"What this tells us is this other pathway could be active under certain conditions," Dudareva said.

Understanding how the pathways work is a first step in finding ways to increase phenylalanine for boosting nutritional values of foods, or decreasing it, which may help in biofuel production.

Dudareva and Maeda will next try to determine how the plant creates feedback to the shikimate pathway. Disrupting that feedback could lead to an abundant production of phenylalanine in plants. The National Science Foundation funded the research.

Explore further: New device could make large biological circuits practical

Related Stories

Periwinkle can serve as tiny chemical plant

Nov 16, 2006

MIT researchers have discovered a way to manipulate the chemistry taking place in the tiny periwinkle plant to produce novel compounds that could have pharmacological benefits.

Process can cut the cost of making cellulosic biofuels

Jan 22, 2009

A patented Michigan State University process to pretreat corn-crop waste before conversion into ethanol means extra nutrients don't have to be added, cutting the cost of making biofuels from cellulose.

Recommended for you

New device could make large biological circuits practical

10 hours ago

Researchers have made great progress in recent years in the design and creation of biological circuits—systems that, like electronic circuits, can take a number of different inputs and deliver a particular ...

Model evaluates where bioenergy crops grow best

13 hours ago

Farmers interested in bioenergy crops now have a resource to help them determine which kind of bioenergy crop would grow best in their regions and what kind of harvest to expect.

Vermicompost leachate improves tomato seedling growth

Nov 21, 2014

Worldwide, drought conditions, extreme temperatures, and high soil saline content all have negative effects on tomato crops. These natural processes reduce soil nutrient content and lifespan, result in reduced plant growth ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.