Plastic electronics could slash the cost of solar panels

Mar 30, 2010 by Chris Emery
Princeton researchers have developed a new way to manufacture electronic devices made of plastic, employing a process that allows the materials to be formed into useful shapes while maintaining their ability to conduct electricity. In the plastic transistor pictured here, the plastic is molded into interdigitated electrodes (orange) allowing current flow to and from the active channel (green). (Image: Loo Research Group)

(PhysOrg.com) -- A new technique developed by Princeton University engineers for producing electricity-conducting plastics could dramatically lower the cost of manufacturing solar panels.

By overcoming technical hurdles to producing plastics that are translucent, malleable and able to conduct electricity, the researchers have opened the door to broader use of the materials in a wide range of electrical devices.

With mounting concerns about global warming and energy demand, plastics could represent a low-cost alternative to (ITO), an expensive conducting material currently used in , according to the researchers.

"Conductive polymers [plastics] have been around for a long time, but processing them to make something useful degraded their ability to conduct electricity," said Yueh-Lin Loo, an associate professor of chemical engineering, who led the Princeton team. "We have figured out how to avoid this trade-off. We can shape the plastics into a useful form while maintaining high ."

A multi-institutional team reported on its new technique in a paper published online March 8 in the .

The area of research, known as "organic electronics" because plastics are carbon-based like living creatures, holds promise for producing new types of electronic devices and new ways of manufacturing existing technologies, but has been hampered by the mysterious loss of conductivity associated with moldable plastics.

"People didn't understand what was happening," said Loo, who co-wrote the paper. "We discovered that in making the polymers moldable, their structures are trapped in a rigid form, which prevented electrical current from traveling through them."

Once they understood the underlying problem, Loo and her colleagues developed a way to relax the structure of the plastics by treating them with an acid after they were processed into the desired form.

Using the method, they were able to make a plastic transistor, a fundamental component of electronics that is used to amplify and switch electronic signals. They produced the electrodes of the transistor by printing the plastic onto a surface, a fast and cheap method similar to the way an ink-jet printer produces a pattern on a piece of paper.

Loo said the technique potentially could be scaled up for mass production presses akin to those used to print newspapers. "Being able to essentially paint on electronics is a big deal," Loo said. "You could distribute the plastics in cartridges the way printer ink is sold, and you wouldn't need exotic machines to print the patterns."

By allowing plastic solar cells to be manufactured using low-cost printing techniques and by replacing ITO as the primary conducting material, the plastics the team developed hold potential for lowering the cost of solar panels.

Currently, the electricity generated by plastic solar cells is collected by a transparent metal conductor made of ITO. The conductor must be transparent so that sunlight can pass through it to the materials in solar cells that absorb the light energy.

A rare and pricey byproduct of mining, ITO had come under increasing demand for use in flat-screen televisions, mobile phones and other devices with display screens. "The cost of indium tin oxide is skyrocketing," Loo said. "To bring down the costs of plastic , we need to find a replacement for ITO. Our conducting plastics allow sunlight to pass through them, making them a viable alternative."

The researchers anticipate that the plastics also could replace expensive metals used in other , such as flexible displays. In addition, the scientists are beginning to explore the use of the plastics in biomedical sensors that would display a certain color if a person had an infection. For instance, the plastics turn from yellow to green when exposed to nitric oxide, a chemical compound produced during ear infections in children.

If the devices could be produced at a low cost, they might be useful in developing countries that lack advanced medical facilities. "You wouldn't need any fancy machines or lab equipment to diagnose an infection," Loo said, "all you would need is your eyes to see the color change in the ."

Explore further: Recycling industrial waste water: Scientists discover a new method of producing hydrogen

Related Stories

New Molecule Heralds Breakthrough in Electronic Plastics

Apr 15, 2004

Developed by TDA Research in Wheat Ridge, Colo., Oligotron polymers are made of tiny bits of material that possess a conducting center and two, non-conducting end pieces. The end pieces allow the plastic bits to dissolve ...

Wafer-Thin Color Displays for Packaging

Oct 07, 2005

Color displays may one day be used practically everywhere. And this would be possible even where it’s unprofitable today for cost reasons, such as on food cartons, medicine packaging or admission tickets. ...

Can Recycling Be Bad for the Environment?

Jul 14, 2009

(PhysOrg.com) -- By now, nearly everyone knows that it is important to recycle. It helps the environment. Even my six-year-old knows that. But what if it doesn't? While it seems pretty straightforward, in ...

Recommended for you

A greener source of polyester—cork trees

16 hours ago

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

A beautiful, peculiar molecule

19 hours ago

"Carbon is peculiar," said Nobel laureate Sir Harold Kroto. "More peculiar than you think." He was speaking to a standing-room-only audience that filled the Raytheon Amphitheater on Monday afternoon for the ...

Metals go from strength to strength

Apr 15, 2014

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

chemgrad
not rated yet Mar 31, 2010
Pretty cool about replacing ITO, although they do absorb like 20-30% of incident light (PANI is green, PEDOT-PSS is blue), so these specific conducting polymers might not make them that attractive for solar cells and OLEDs.

I guess the cool thing is high-conductivity polyaniline (PANI), which isn't as corrosive as PEDOT-PSS (because there exists some protonated PSS, which is very acidic).

Also, plastic transistors have been around for a long time, the important thing is that this paper/research shows ~an order of magnitude increase over non-processed materials.

More news stories

Breakthrough points to new drugs from nature

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

A greener source of polyester—cork trees

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

New clinical trial launched for advance lung cancer

Cancer Research UK is partnering with pharmaceutical companies AstraZeneca and Pfizer to create a pioneering clinical trial for patients with advanced lung cancer – marking a new era of research into personalised medicines ...

'Chief Yahoo' David Filo returns to board

Yahoo announced the nomination of three new board members, including company co-founder David Filo, who earned the nickname and formal job title of "Chief Yahoo."