New PV cell generates electricity from IR and UV light

Mar 24, 2010 by Lin Edwards report
The PV cell prototyped at the Kyoto Institute of Technology by adding cobalt to a p-type GaN thin film and laminating an n-type material (right). The cell with an absorbing layer measures 10 x 10mm. The surrounding thin rectangular patterns are electrodes. And the p-type GaN thin film without cobalt (left). Image via: Tech on.

(PhysOrg.com) -- A prototype of a new type of photovoltaic (PV) cell that generates electricity from visible, infrared and ultraviolet light has been demonstrated by a group of Japanese scientists. It could lead to the development of a highly-efficient PV cell in the future, without needing multijunction cells.

The research was led by Associate Professor Saki Sonoda of the Kyoto Institute of Technology. The prototype cell has a high open voltage (Voc) at around two volts, but a low . Sonada and the team hope the conversion rates can be improved.

Photovoltaic materials convert light to electricity at the atomic level by absorbing photons of light and releasing electrons that can be captured to produce an electric current. Most PV cells are multijunction devices, with single junction cells stacked in descending order of band gap. The cell at the top captures high-energy photons, while those at the bottom with lower band gaps capture the lower energy photons. The new cell is able to capture photons with a wide range of energies in a single junction cell.

The team made the 10 mm square PV cell by adding elements such as manganese (Mn) or cobalt (Co) to the transparent (GaN). When the element is added, the absorption coefficient of GaN is higher, allowing a much wider spectrum of light to be absorbed, including infrared, visible and ultraviolet. A cell made from p-type GaN with added Mn or Co is transparent and black, whereas GaN without additions is not.

Manganese and cobalt are 3d transition metals, which are elements in which the number of electrons in the 3d orbit (inside the outermost orbit) increases as the number of protons in the nucleus (and hence the atomic number) increases. Other well-known 3d transition metals include titanium (Ti), (Fe), copper (Cu) nickel (Ni) and zinc (Zn).

The scientists tried several 3d transition metals with GaN and obtained good results with many of them, including manganese and cobalt. Other researchers have tried adding indium (In) to gallium nitride PV cells with the aim of narrowing the to enable it to absorb a wider wavelength band of visible light.

The prototype was demonstrated during a 90-minute lecture at the 57th Spring Meeting of the Japan Society of Applied Physics on March 19.

Explore further: Samsung mass produces industry's first 8-gigabit DDR4 based on 20 nanometer process technology

Related Stories

More efficient devices on solar cells due to energy matching

Dec 07, 2006

Many wireless devices currently work on solar energy (photovoltaic = PV). Often the choice for PV cells seems merely to be based on the green image. Yet this technology can be used far more effectively if the elements from ...

New alloys key to efficient energy and lighting

Mar 22, 2010

A recent advance by Arizona State University researchers in developing nanowires could lead to more efficient photovoltaic cells for generating energy from sunlight, and to better light-emitting diodes (LEDs) that could replace ...

Hot Electrons Could Double Solar Cell Power Efficiency

Dec 18, 2009

Scientists have experimentally verified a theory suggesting that hot electrons could double the output of solar cells. The researchers, from Boston College, have built solar cells that successfully use hot ...

Recommended for you

Christian Bale to play Apple's Steve Jobs

16 minutes ago

Oscar-winner Christian Bale, best known for his star turn in the blockbuster "Batman" film franchise, will play Apple co-founder Steve Jobs in an upcoming biopic.

Netflix to stream new online TV series, 'Bloodline'

17 minutes ago

Fresh from commercial and critical success with hit shows "House of Cards" and "Orange is the New Black," Netflix on Thursday announced a new online series, "Bloodline," set for release in March.

Intelligent materials that work in space

1 hour ago

ARQUIMEA, a company that began in the Business Incubator in the Science Park of the Universidad Carlos III de Madrid, will be testing technology it has developed in the International Space Station. The technology ...

How to find a submarine

4 hours ago

Das Boot, The Hunt for Red October, The Bedford Incident, We Dive At Dawn: films based on submariners' experience reflect the tense and unusual nature of undersea warfare – where it is often not how well ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Sci_Phys_observer
4 / 5 (3) Mar 24, 2010
There is a better article that give more useful information at :
http://www.semico...310.html
Im always amazed at how little useful information is disclosed here
Yogaman
5 / 5 (3) Mar 24, 2010
That url is missing a hyphen between semiconductor and today, SPo, possibly thanks to word wrap. A fixed version is at http://tinyurl.com/yghgl4g

I once shared your amazement, but constant repetition has dulled it.
Thanks for the pointer, though.
Eco_R1
not rated yet Mar 25, 2010
heat shielding + "free" energy, i'll take it!