High-Reliability Read-Method for Spin-Torque-Transfer MRAM, Next-Generation Non-Volatile Memory

Feb 12, 2010
Figure 1: Principle of spin-torque-transfer (STT) MRAM

Fujitsu Laboratories and the University of Toronto today announced that they have jointly developed the world's first high-reliability read-method for use with spin-torque-transfer (STT) MRAM that is insusceptible to erroneous writes.

STT MRAM is regarded as a potential future form of non-volatile memory that could be used as an alternative to flash memory. NOR flash memory that is embedded in microcontrollers widely used in mobile phones and other is expected to reach the limits of its feasible miniaturization in the near future, which has led to the search for an alternative low-power non-volatile memory that will allow continued necessary miniaturization. By resolving one of the major obstacles to using STT MRAM, Fujitsu and the University of Toronto's new read-method marks a major step towards the practical implementation of STT MRAM as a necessary replacement for flash memory, in view of future requirements that will be necessary for compact and low-power electronic devices.

Details of this technology were presented at the IEEE International Solid-State Circuits Conference 2010 (ISSCC 2010) being held in San Francisco from February 7-11.

Many electronic devices such as mobile phones or PDAs use microcontrollers with embedded flash memory, which allows onboard software to be rewritten. However, NOR flash memory used in such microcontrollers is nearing the physical limits of its miniaturization, which has led to research on various types of memory that could replace NOR flash memory.

STT MRAM, which uses as the element, is gaining attention as an emerging potential candidate to replace flash memory, as STT MRAM meets the needs for speed, low , and miniaturization that would make it a good candidate to replace flash memory.

STT MRAM uses memory storage elements that take advantage of the effect in which a current that is passed through a magnetic material - such as a magnetic tunnel junction (MTJ) - reverses its direction of magnetization (Figure 1). Passing a current through the MTJ causes its direction of magnetization to switch between a parallel or anti-parallel state, which has the effect of switching between low resistance and high resistance. Because this can be used to represent the 1s and 0s of digital information, STT MRAM can be used as a non-volatile memory.

Reading STT MRAM involves applying a voltage to the MTJ to discover whether the MTJ offers high resistance to current ("1") or low ("0"). However, a relatively high voltage needs to be applied to the MTJ to correctly determine whether its resistance is high or low, and the current passed at this voltage leaves little difference between the read-current and the write-current. Any fluctuation in the electrical characteristics of individual MTJs could cause what was intended as a read-current, to have the effect of a write-current, thus reversing the direction of magnetization of the MTJ (Figure 2).

Figure 2: Erroneous-read issue encountered with spin-torque-transfer (STT) MRAM

Attempting to detect whether resistance is high or low by passing a current through this element can cause its magnetic direction to switch, because of the read current itself.

In a joint collaboration, Laboratories and the University of Toronto have developed an innovative circuit design (Figure 3) that for the first time resolves the issue of erroneous writes in STT MRAM during read operations.

The newly developed read-method uses a negative resistance that is intermediate between the MTJ's high resistance and low resistance on a parallel circuit (Figure 4). If the MTJ is in a high-resistance state, this circuit exhibits negative-resistance characteristics. If the MTJ is in a low-resistance state, then it exhibits normal-resistance characteristics. These characteristics allow the resistance value to be read at lower voltages than before, suppressing the tendency of the read operation to reverse the direction of magnetization and avoiding the problem of erroneous write operations.

Figure 3: Spin-torque-transfer MRAM circuit embedded in a CMOS chip

Figure 4: Circuit employing negative resistance

The development of this new read circuit with negative resistance has resulted in STT MRAM that is insusceptible to erroneous writes caused by fluctuations in the electrical characteristics of the MTJs. It is anticipated that the STT MRAM used as miniaturized non-volatile memory would enable greater high-performance in mobile phones and other electronic devices.

Explore further: New design for mobile phone masts could cut carbon emissions

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Tech giants look to skies to spread Internet

2 hours ago

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

3 hours ago

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

4 hours ago

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.

Dish Network denies wrongdoing in $2M settlement

13 hours ago

The state attorney general's office says Dish Network Corp. will reimburse Washington state customers about $2 million for what it calls a deceptive surcharge, but the satellite TV provider denies any wrongdoing.

Yahoo sees signs of growth in 'core' (Update)

13 hours ago

Yahoo reported a stronger-than-expected first-quarter profit Tuesday, results hailed by chief executive Marissa Mayer as showing growth in the Web giant's "core" business.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Quantum_Conundrum
not rated yet Feb 12, 2010
I think I'll just wait another 5-10 years before I buy another computer. Not that I can afford one right now anyway, but even if I could, I think it makes most sense to just wait.

In ten years we'll have for bottom of the line PC!!:

-400GB MRAM standard

- 4 cores, 100Gigahertz graphene CPU

- Similar video card with ~200GB MRAM

- 20,000x20,000 resolution with 128 bit color depth.

- Microsoft Office 2020 will allow you to print electronic books on custom hand-held computers, via a nano-assembly mechanism using nothing but garbage for the building material, instead of printing books, and forms on paper.

- All for about $1300 (U.S. 2010.)*

* Includes printer and monitor.
jj2009
not rated yet Feb 12, 2010
with the way the american economy is going these days, i would reckon that to be more like $100,000

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...