Wireless optical transmission key to secure, safe and rapid indoor communications

Jan 27, 2010

Light is better than radio waves when it comes to some wireless communications, according to Penn State engineers. Optical communications systems could provide faster, more secure communications with wider bandwidth and would be suitable for restricted areas like hospitals, aircraft and factories.

Sending information via either in physical light guides or wirelessly is not new, but existing wireless systems either require direct line of sight or are diffused and have low signal strength. The researchers chose to take a different approach using multi-element transmitters and multi-branch optical receivers in a quasi-diffuse configuration.

The system uses a high-powered -- a device that converts electricity into light -- as the optical transmitter and an avalanche photo diode -- a device that converts light to electricity -- as the receiver. The light bounces off the walls and is picked up by the receiver.

"Unless the walls are painted solid black, there is no need to worry about transmission within a room," said Jarir Fadlullah, graduate student in electrical engineering who presented the paper today (Jan. 27) at SPIE Phonotics West Conference in San Francisco, the paper will be published in the conference proceedings.

The researchers tested , but the system will also work with visible light and ultraviolet light.

"The optical system we have offers a very large bandwidth thus a very high speed," said Fadlullah. "We can send one gigabit per second or more over a gigahertz band."

The researchers, including Mohshen Kavehrad, professor of electrical engineering, think this looks like an ideal system. systems do not require line of sight transmission, but can pass through some substances and so present a security problem. Light, in a room without windows, will not escape the room, improving security, but also allowing the same frequencies to be used in adjacent rooms without interference. Multiple sensors could allow the light signal to pass from room to room or even from floor to floor. The system could also be set up to convert the signal to electricity, transfer it to another location and change it back to light.

"The safest security is physical layer security," said Mohshen Kavehrad. "If you first have to break into the building before you can attack the network it makes it very difficult."

He also notes that an optical system can operate in locations where radio frequency transmission would interfere with other equipment, especially in hospitals, aircraft and even some factories. Because this system is optical, it will not interfere with the radio frequency emissions of navigation equipment, medical devices or factory control systems.

Optical transmissions can transfer sensor data and unlike radio frequency communications, can also distribute high-resolution images.

"One application for this system would be wireless projection of high definition television," said Kavehrad. "Currently, two high definition broadcasts exceed the bandwidth of any radio system, but with a 1.6 gigabit per second gigabit system, two HD channels could be broadcast."

While this application in conference rooms could provide mobility for presentations, applications in aircraft and medical facilities are probably more important. Currently, wireless communications are difficult in these situations because radio frequency systems can interfere with equipment using radio frequency control or communications. An optical system can operate in the same space as a radio system without interference.

"As far as I know, these are the first set of measurements for indoor optical wireless links that show the feasibility of the highest bit rates with no line-of-sight," said Kavehrad. "No radio system had comparable ability."

The researchers will continue to test , looking at visible and ultra violet light. They also believe that light emitting diode room lighting could be incorporated into the systems to provide a blanket communications network. The researchers note that this is a very green technology.

Explore further: California quake points to research advancements in retrofitting older buildings

Related Stories

NIST Measures Challenges for Wireless in Factories

Aug 31, 2007

Factories have much to gain from wireless technology, such as robot control, RFID tag monitoring, and local-area network (LAN) communications. Wireless systems can cost less and offer more flexibility than cabled systems. ...

Conflicting signals can confuse rescue robots

Mar 02, 2007

Sensor-laden robots capable of vital search and rescue missions at disaster sites are no figment of a science fiction writer's imagination. Prototypes and commercial models of urban search and rescue (US&R) robots will soon ...

Riding the ultra wideband communications wave

Dec 13, 2005

Ultra wideband usually refers to a radio communications technique based on transmitting very-short-duration pulses, down to nanoseconds (billionths of a second) or picoseconds (trillionths). The occupied bandwidth ...

Recommended for you

Greater safety and security at Europe's train stations

Sep 01, 2014

When a suspicious individual fleas on a bus or by train, then things usually get tough for the police. This is because the security systems of the various transportation companies and security services are ...

Fingerprints for freight items

Sep 01, 2014

Security is a top priority in air freight logistics but screening procedures can be very time consuming and costly. Fraunhofer researchers intend to boost efficiency with a new approach to digital logistics, ...

On the way to a safe and secure smart home

Sep 01, 2014

A growing number of household operations can be managed via the Internet. Today's "Smart Home" promises efficient building management. But often the systems are not secure and can only be retrofitted at great ...

DIY glove-based tutor indicates muscle-memory potential

Aug 31, 2014

A senior editor at IEEE Spectrum worked on a DIY project that enabled his 11-year-old son to improve his touch typing by use of a vibrating glove. His son was already "pretty quick on the keyboard," said ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

sams
not rated yet Jan 27, 2010
You would want a frequency that is blocked by glass I suspect.
dirk_bruere
not rated yet Jan 28, 2010
Wow! These researchers could have saved themselves a lot of trouble by reading some back issues of electronics mags circa 1980 which described an IBM system which did exactly this. Another wheel successfully reinvented.