New concoction reprograms differentiated cells into pluripotent stem cells

Jan 21, 2010

In the new issue of the journal Cell Stem Cell, Singapore scientists report the surprising discovery that a novel transcription factor, Nr5a2, can replace one of the classical reprogramming factors, Oct 4, to significantly increase the efficiency of reprogramming differentiated stem cells into induced pluripotent stem cells (iPS cells).

Previous research revealed that the reprogramming of differentiated cells into induced iPS cells could be achieved by the three , Oct4, Sox2 and Klf4.

In this latest finding, which is potentially relevant to cell therapy-based medicine, Genome Institute of Singapore (GIS) and National University of Singapore (NUS) scientists determined that Nr5a2 can replace Oct4. Thus, a new combination of Nr5a2, Sox2 and Klf4 can reprogram differentiated cells into iPS cells.

"This is a very exciting moment," said GIS Senior Group Leader Ng Huck Hui, Ph.D. "Fundamental research in is extremely important for us to harness the full potentials of these cells, and this study provides valuable and crucial insights into the mechanism of reprogramming.

"Given Oct4's critical role in embryonic stem cells and reprogramming, we were very surprised with the discovery that Nr5a2 could replace Oct4," added Dr. Ng, senior author of the paper. "This study highlights the prospect of finding more surprises in the field of reprogramming."

"This paper represents significant addition to the very active field of cellular reprogramming," added Davor Solter, M.D., Ph.D., Senior Principal Investigator at Singapore's Institute of Medical Biology (IMB).

Both GIS and IMB are part of Singapore's A*STAR (Agency for Science, Technology and Research).

"The authors show that for Nr5a2 can replace one of the classical reprogramming factors Oct 4," Dr. Solter said. "In addition they presented evidence that this and another nuclear receptor can significantly increase the efficiency of reprogramming. These results have great basic and practical significance."

The reprogramming of differentiated cells into iPS cells is one of the most important breakthroughs in stem cell research, because iPS cells can give rise to all other differentiated cell types that make up the human body.

Because they behave like embryonic , iPS cells are important starting points for the creation of organs for replacement or transplantation.

The Cell Stem Cell paper, published on Jan. 21, 2010, is the second research report on iPS cell science by Dr. Ng's research group. In Jan. 2009, Dr. Ng and his colleagues reported in Nature Cell Biology that the transcription factor Esrrb could replace Klf4 in the combination of Oct4, Sox2 and Klf4 for iPS cell creation.

Explore further: Researchers successfully clone adult human stem cells

More information: The paper titled, "The Nuclear Receptor Nr5a2 can replace Oct4 in the Reprogramming of Murine Somatic Cells to Pluripotent Cells," will be published in the Jan. 21, 2010 online issue of Cell Stem Cell.

Provided by Agency for Science, Technology and Research (A*STAR)

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Researchers piggyback to safer reprogrammed stem cells

Feb 27, 2009

Austin Smith and his research team at the Centre for Stem Cell Research in Cambridge have just published in the journal Development a new and safer way of generating pluripotent stem cells - the stem cells that can give r ...

Molecular alliance that sustains embryonic stem cell state

Mar 04, 2008

One of the four ingredients in the genetic recipe that scientists in Japan and the U.S. followed last year to persuade human skin cells to revert to an embryonic stem cell state, is dispensable in ES cells, thanks to the ...

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...