The Physics of Pizza Tossing

Apr 09, 2009 By Lisa Zyga feature
How a chef tosses pizza dough reveals insight into the motors used in microactuation technology, which has applications such as microrobotics. Image credit: K.-C. Liu, et al.

(PhysOrg.com) -- As dough flies through the air, transforming from a ball into a disk in the chef’s experienced hands, pizza tossing can definitely be thought of as an art. But, as a recent study shows, pizza tossing is also a science.

Researchers at the MicroNanophysics Research Laboratory at Monash University in Melbourne, Victoria, Australia, have developed a model of pizza tossing based on observations of professional chefs tossing dough. They came up with calculations that describe the dough’s trajectory, allowing them to identify the optimal tossing motions in terms of rotational speed, stability, and . Besides being an interesting description, the results could also help researchers in designing optimal standing wave ultrasonic motors (SWUMs), which operate on similar principles as pizza tossing.

“At first it started from a conversation I had with a colleague, Dr. Heidi Forde from medicine here at Monash University,” James Friend, coauthor of the study, told PhysOrg.com. “She couldn't understand how our little motors worked. So I had the flash of insight that, well, they work like a chef tossing pizza dough. The dough spins just like the rotor spins because the chef tosses the rotor just like the motor does; the differences between the two are just really in the details. Turns out no one had apparently thought about how to really toss pizza, either, so that became a bigger part of what we looked at with this, and when we found that experts tossed pizza exactly as the theory said they should for optimum results, we were thrilled.”

This video is not supported by your browser at this time.

In their study, the researchers predicted that the tossing motion used by professional chefs and performers provides certain advantages in terms of effort, speed, and ease of handling. They explain that a tossed disk experiences four distinct phases: parabolic flight, impact (upon landing in the chef’s hands), sticking contact (as the chef’s hands grip the dough), and sliding contact (as the chef prepares to toss the dough). By determining the correct descriptions and durations of these four phases, the scientists could solve the pizza’s motion.

The researchers investigated two types of dough tossing: single tossing and multiple tossing. In single tossing (when tossing the dough from rest), they found that the optimal motion is a helical, or spiral-like, trajectory. As the scientists explain, when the dough is at rest, torque (twist) must be transferred to the dough via sliding or static friction. When the dough is in the air, its airborne rotational speed matches the rotational speed the chef gives it at the moment of separation. For this reason, single tosses follow a spiral-like trajectory.

Advanced dough tossers can perform multiple tosses (tossing the dough repeatedly before it rests in the chef’s hands). In multiple tossing, the scientists found that the optimal motion is a semi-elliptical trajectory, in which the disk flies through the air at an angle rather than flying perfectly flat. Multiple tossing is more complex, as it risks entering chaotic and chattering regimes, emphasizing the disk’s sensitive dependence on initial conditions. Generally, dough tossers use the helical motion for the first toss, and change to a semi-elliptical motion for subsequent tosses.

As the scientists explain, multiple tossing shares similarities with standing wave ultrasonic motors, since both convert reciprocal input into continuous rotational motion using the same mechanism. The electric motors operate by using friction from the ultrasonic vibration of a stator to spin a rotor. Engineers who design these motors generally give the stator an elliptical motion, in accordance with the findings from the researchers’ pizza tossing analysis. However, the researchers found that the reason for the preferred elliptical motion is different than motor engineers have assumed. This insight and further investigation might help designers improve the operation of the motors in new ways.

“Our work is focused on developing effective microactuation technology - devices and physical understanding of phenomena at the micro- to nano-scale that can be used to deliver controlled and powerful motion for microrobotics, mainly for surgery,” Friend said. “This study's greatest achievement is that it answers many of the more perplexing questions in how ultrasonic piezoelectric motors actually work: why does the choice of materials in them not work as expected, why do they make such unbearably loud noises when improperly designed, why do the rotors not spin as expected, and so on.”

More information: Liu, K.-C.; Friend, J.; and Yeo, L. “The behavior of bouncing disks and pizza tossing.” Europhysics Letters, 85 (2009) 60002, doi: 10.1209/0295-5075/85/60002.

Copyright 2009 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Novel approach to magnetic measurements atom-by-atom

add to favorites email to friend print save as pdf

Related Stories

HP Compaq Mini 700 Netbook Launched in Europe

Dec 23, 2008

(PhysOrg.com) -- HP has launched their 10.2 inch netbook in Europe yesterday. The Compaq Mini incorporates a 1.6 GHz processor using an Intel Atom CPU along with an GMA950 graphics processor, with 1 GB of ...

Foldable phone opens into large OLED screen

Nov 24, 2008

(PhysOrg.com) -- A new cell phone developed by Samsung opens like a book to reveal a larger OLED screen, essentially turning the phone into a portable media player. Samsung recently demonstrated the prototype ...

Two Robot Chefs Make Omelets

Dec 04, 2008

(PhysOrg.com) -- No "house of the future" is complete without a household robot to do the cooking and cleaning. Although today´s robots still have a ways to go before substituting for a real live-in maid, ...

Dell Talking About 80-Core Chip Processor

Nov 20, 2008

(PhysOrg.com) -- This week Michael Dell (CEO of Dell) gave a slide presentation that included Intel´s recently developed 80-core processor. This isn't the first time that the 80-core chip was mentioned in ...

Recommended for you

Hide and seek: Sterile neutrinos remain elusive

3 hours ago

The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called ...

Novel approach to magnetic measurements atom-by-atom

7 hours ago

Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate ...

Scientists demonstrate Stokes drift principle

11 hours ago

In nature, waves – such as those in the ocean – begin as local oscillations in the water that spread out, ripple fashion, from their point of origin. But fans of Star Trek will recall a different sort of wave pattern: ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

jimbo92107
5 / 5 (3) Apr 09, 2009
All very scientific, until the dough hits the ceiling...
Husky
not rated yet Apr 09, 2009
or the fan, thats how they invented the pizzinnis
NeilFarbstein
3.3 / 5 (3) Apr 09, 2009
you are all wrong, dark matter is holding the pizzas togther!
Mercury_01
5 / 5 (1) Apr 09, 2009
By AWT, pizza is mostly just empty carbs.
Alizee
Apr 10, 2009
This comment has been removed by a moderator.
Bob_Kob
not rated yet Apr 10, 2009
By Soviet Russia, pizzas are mostly empty galaxies.