Protein is key to embryonic stem cell differentiation

Mar 18, 2009

Investigators at Burnham Institute for Medical Research (Burnham) have learned that a protein called Shp2 plays a critical role in the pathways that control decisions for differentiation or self-renewal in both human embryonic stem cells (hESCs) and mouse embryonic stem cells (mESCs).

The research, led by Gen-Sheng Feng, Ph.D., differs with some earlier findings that suggested hESCs and mESCs differentiate as a result of different signaling mechanisms. The discovery that Shp2 has a conserved role between mice and humans suggests an interesting common signaling mechanism between mESCs and hESCs, despite the known distinct signaling paths and biological properties between the two types of pluripotent . The study was published online in the journal on March 17, 2009.

(ESCs) are that can differentiate to become more than 200 different cell types. Because of their plasticity, ESCs have been suggested as potential therapies for numerous diseases and conditions, including , spinal cord injury and . Development of such therapies is largely dependent on fully understanding and controlling the processes that lead to of hESCs into specialized cell types.

"There are many signaling pathways that help embryonic stem cells decide their fate," said Dr. Feng. "We found that the Shp2 protein acts as a coordinator that fine-tunes the of multiple pathways and gives us a better understanding of the fundamental signaling methods that determine whether a stem cell's fate will be self-renewal or differentiation."

In the study, the Feng lab created mutant Shp2 mESCs and showed that differentiation was dramatically impaired as the cells self-renewed as stem cells. The researchers also demonstrated small interfering RNAs in hESCs reduce Shp2 expression and subsequent cell differentiation. Feng and colleagues screened and identified a small-molecule inhibitor of Shp2 that, in small doses, partially inhibits differentiation in both mESCs and hESCs. Taken together, these results suggest a conserved role for Shp2 in ESC differentiation and self-renewal in both mice and humans.

"This opens the door for new experimental reagents that will amplify the self-renewal process to create more stem cells for research and potential clinical use in the future," Dr. Feng added. "This research also suggests that comparative analysis of mouse and human embryonic stem cells will provide fundamental insight into the cellular processes that determine 'stemness,' a critical question that remains to be answered in the stem cell biology field."

Source: Burnham Institute

Explore further: Two-armed control of ATR, a master regulator of the DNA damage checkpoint

add to favorites email to friend print save as pdf

Related Stories

Forever young: Differentiation blocked in tumor stem cells

Jan 07, 2008

A new comparison of normal stem cells and cancer stem cells reveals that the cancer stem cells are abnormally trapped at an early stage of development. The research, published by Cell Press in the January issue of Cancer Ce ...

Enzyme plays key role in cell fate

Jun 04, 2008

The road to death or differentiation follows a similar course in embryonic stem cells, said researchers at Baylor College of Medicine in Houston in a report that appears online today in the journal Cell Stem Cell.

Recommended for you

Japanese scientist resigns over stem cell scandal

Dec 19, 2014

A researcher embroiled in a fabrication scandal that has rocked Japan's scientific establishment said Friday she would resign after failing to reproduce results of what was once billed as a ground-breaking study on ...

'Hairclip' protein mechanism explained

Dec 18, 2014

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.