New quantum key system combines speed, distance

Jun 09, 2007
New Quantum Key System Combines Speed, Distance
Detection stage of the NIST prototype quantum key distribution system: Photons are "up-converted" from 1310 to 710 nm by one of the two NIST-designed converters at right, then sent to one of two commercial silicon avalanche photo diode units to the left. Credit: NIST

Researchers at NIST have built a prototype high-speed quantum key distribution system, based on a new detector system that achieves dramatically lower noise levels than similar systems.

Researchers at the National Institute of Standards and Technology have built a prototype high-speed quantum key distribution (QKD) system, based on a new detector system that achieves dramatically lower noise levels than similar systems. The new system, they say, can perform a theoretically unbreakable “one-time pad” encryption, transmission and decryption of a video signal in real-time over a distance of at least 10 kilometers.

Key distribution—the problem of ensuring that both the sender and receiver of an encrypted message (and no one else) share the same long string of random digits (the so-called “key”) used to encode and decode the message—has always been one of the most important challenges in cryptography. Since the 1980’s it’s been recognized that the unique properties of quantum mechanics—the fact that certain measurements cannot be made without altering the thing measured—offered the possibility of a system that could transmit as long a key as desired between two parties with no chance that it could be copied undetectably by a third party.

Since then the race has been on to build a fast, practical and reliable QKD system. One important requirement for any candidate system is that it be compatible with existing fiber-optic telecom networks that transmit at wavelengths of either 1550 or 1310 nanometers (nm) to reach the greatest distance. Another requirement is a highly efficient photon detector that can detect single photons reliably without introducing significant amounts of “noise.” One of the best low-noise detectors, a silicon-based avalanche photo diode (Si-APD), does not function at the telecom wavelengths. Instead, it operates best at much shorter wavelengths around 700 nm. To take advantage of the Si-APD, the NIST group designed a sub-system to “up-convert” single photons from a transmission wavelength of 1310 nm to 710 nm for high-efficiency detection.

Their QKD system that incorporates this up-conversion technique, described in a recent paper, generates and transmits secure keys at a rate of over half a million bits per second over 10 km of optical fiber, fast enough to encrypt streaming digital video using one-time pad in real time. The group also has transmitted secure keys at rates near 10 kilobits per second at five times that distance. The same team last year set a speed record for transmission of secure keys over a kilometer of fiber (see phys.org/news64589539.html). This work improves the distance by at least 10 times.

Advantages of the new system, according to the research team, include high speed, high efficiency, low noise and convenience of operation. The fact that it uses a 1310 nm transmission wavelength somewhat limits the propagation distance but adds the advantage that the parallel “classical-quantum” communication, which is needed for a full QKD system, can be realized in a single fiber without significant interference.

Details of NIST’s up-conversion QKD research are available at w3.antd.nist.gov/quin.shtml.

Citation: H. Xu, L. Ma, A. Mink, B. Hershman and X. Tang. 1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm. Optics Express, Vol. 15, Issue 12, pp. 7247-7260.

Source: National Institute of Standards and Technology

Explore further: Seeking 'absolute zero', copper cube gets chillingly close

add to favorites email to friend print save as pdf

Related Stories

Quantum test strengthens support for EPR steering

Oct 14, 2014

Although the concept of "steering" in quantum mechanics was proposed back in 1935, it is still not completely understood today. Steering refers to the ability of one system to nonlocally affect, or steer, ...

Sensor network tracks down illegal bomb-making

Oct 01, 2014

Terrorists can manufacture bombs with relative ease, few aids and easily accessible materials such as synthetic fertilizer. Not always do security forces succeed in preventing the attacks and tracking down ...

Entanglement made tangible

Sep 30, 2014

EPFL scientists have designed a first-ever experiment for demonstrating quantum entanglement in the macroscopic realm. Unlike other such proposals, the experiment is relatively easy to set up and run with existing semiconductor ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

8 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

8 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

9 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 0