Smartwatches can now track your finger in mid-air using sonar

March 15, 2016 by Jennifer Langston
FingerIO, a new sonar technology developed by UW computer scientists and electrical engineers, allows you to interact with mobile devices and tiny smartwatch screens by writing or gesturing on any nearby surface -- a tabletop, piece of paper or even in mid-air. Credit: Dennis Wise, University of Washington

As mobile and wearable devices such as smartwatches grow smaller, it gets tougher for people to interact with screens the size of a matchbook.

That could change with a new sonar technology developed by University of Washington computer scientists and electrical engineers that allows you to interact with by writing or gesturing on any nearby surface—a tabletop, a sheet of paper or even in mid-air.

FingerIO tracks fine-grained finger movements by turning a smartphone or smartwatch into an active sonar system using the 's own microphones and speakers.

Because sound waves travel through fabric and do not require a line of sight, users can even interact with a phone inside a front pocket or a smartwatch hidden under a sweater sleeve.

In a paper to be presented in May at the Association for Computing Machinery's CHI 2016 conference in San Jose, California, the UW team demonstrates that FingerIO can accurately track two-dimensional finger movements to within 8mm, which is sufficiently accurate to interact with today's mobile devices. The work was recognized with an honorable mention award by the conference.

"You can't type very easily onto a smartwatch display, so we wanted to transform a desk or any area around a device into an input surface," said lead author Rajalakshmi Nandakumar, a UW doctoral student in computer science and engineering. "I don't need to instrument my fingers with any other sensors—I just use my finger to write something on a desk or any other surface and the device can track it with high resolution."

Smartwatches can now track your finger in mid-air using sonar
In user testing with off-the-shelf smartphones, the finger location computed by FingerIO (in green) was accurate to within 8mm of the actual motion recorded on a separate touchscreen (shown in black). Credit: University of Washington

Using FingerIO, one could use the flick of a finger to turn up the volume, press a button, or scroll through menus on a smartphone without touching it, or even write a search command or text in the air rather than typing on a tiny screen.

FingerIO turns a smartwatch or smartphone into a sonar system using the device's own speaker to emit an inaudible sound wave. That signal bounces off the finger, and those "echoes" are recorded by the device's microphones and used to calculate the finger's location in space.

Using sound waves to track finger motion offers several advantages over cameras—which don't work without line-of-sight when the device is hidden by fabric or another obstructions—and other technologies like radar that require both custom sensor hardware and greater computing power, said senior author and UW assistant professor of computer science and engineering Shyam Gollakota.

"Acoustic signals are great—because travel much slower than the radio waves used in radar, you don't need as much processing bandwidth so everything is simpler," said Gollakota, who directs the UW's Networks and Mobile Systems Lab. "And from a cost perspective, almost every device has a speaker and microphones so you can achieve this without any special hardware."

The video will load shortly
University of Washington computer science and engineering and electrical engineering researchers demonstrate FingerIO, a new technology from CSE's Networks and Mobile Systems Lab that employs sonar to enable users to interact with their smartphones and smartwatches by gesturing or writing on any nearby surface. Credit: University of Washington Department of Computer Science & Engineering

But sonar echoes are weak and typically not accurate enough to track finger motion at a high resolution. Errors of a few centimeters make it impossible to differentiate between writing individual letters or subtle hand gestures.

The UW researchers employed a type of signal typically used in wireless communication—called Orthogonal Frequency Division Multiplexing—and demonstrated that it can be used to achieve high-resolution finger tracking using sound. Their algorithms leverage the properties of OFDM signals to track phase changes in the echoes and correct for any errors in the finger location to achieve sub-centimeter finger tracking.

To test their approach, the researchers created a FingerIO prototype app for Android devices and downloaded it to an off-the-shelf Samsung Galaxy S4 smartphone and a smartwatch customized with two microphones, which are needed to track in two dimensions. Today's smartwatches typically only have one, which can be used to track a finger in one dimension.

The researchers asked testers to draw shapes such as stars, squiggles or figure 8s on a touchpad next to a smartphone or smartwatch running FingerIO. Then they compared the touchpad tracings to the shapes created by FingerIO's tracking.

The average difference between the drawings and the FingerIO tracings was 0.8 centimeters for the smartphone and 1.2 centimeters for the smartwatch.

"Given that your finger is already a centimeter thick, that's sufficient to accurately interact with the devices," said co-author and electrical engineering graduate student Vikram Iyer.

Next steps for the research team include demonstrating how FingerIO can be used to track multiple fingers moving at the same time, and extending its tracking abilities into three dimensions by adding additional microphones to the devices.

Explore further: Electromagnets and sensors track the motions of fingers

Related Stories

Electromagnets and sensors track the motions of fingers

December 23, 2015

A university's ubiquitous computing lab has teamed up with virtual reality company Oculus to work on a system capable of precisely tracking finger movements. You and your VR game in the future could be thriving on magnets ...

Engineers achieve Wi-Fi at 10,000 times lower power

February 23, 2016

The upside of Wi-Fi is that it's everywhere - invisibly connecting laptops to printers, allowing smartphones to make calls or stream movies without cell service, and letting online gamers battle it out.

Finger gestures will tell your smartwatch what to do

May 25, 2015

Gesture control for smartwatches is the key mission for a startup called Deus Ex Technology. They have devised a module which can fit into a smartwatch band and behave as a gesture controller for your timepiece. Let your ...

Review: High-tech gloves work as advertised

February 25, 2016

Connected wearables. It's a fancy term for gadgets built into clothing or accessories you wear like a smartwatch or fitness monitor or even a Bluetooth headset.

Recommended for you

Microsoft aims at Apple with high-end PCs, 3D software

October 26, 2016

Microsoft launched a new consumer offensive Wednesday, unveiling a high-end computer that challenges the Apple iMac along with an updated Windows operating system that showcases three-dimensional content and "mixed reality."

Making it easier to collaborate on code

October 26, 2016

Git is an open-source system with a polarizing reputation among programmers. It's a powerful tool to help developers track changes to code, but many view it as prohibitively difficult to use.

Dutch unveil giant vacuum to clean outside air

October 25, 2016

Dutch inventors Tuesday unveiled what they called the world's first giant outside air vacuum cleaner—a large purifying system intended to filter out toxic tiny particles from the atmosphere surrounding the machine.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.