Molecular diagnostics at home: Chemists design rapid, simple, inexpensive tests using DNA

September 23, 2015
Professor Alexis Vallée-Bélisle of the University of Montreal and his colleagues have built an inexpensive, portable sensor that enables fast and easy detection of multiple diagnostically relevant proteins (in fewer than 10 minutes.) The sensing principle is straightforward: the diagnostically relevant protein (green or red), if present, binds to an electro-active DNA strand and limits the ability of this DNA to hybridize to its complementary strand located on the surface of a gold electrode. This causes a reduction of electrochemical signal, which can be easily measured using inexpensive devices similar to those used in the home glucose self-test meter. Using this sensor, the researchers were able to detect several proteins directly in whole blood in less than 10 minutes. Credit: Ryan & Peter Allen

Chemists at the University of Montreal used DNA molecules to developed rapid, inexpensive medical diagnostic tests that take only a few minutes to perform. Their findings, which will officially be published tomorrow in the Journal of the American Chemical Society, may aid efforts to build point-of-care devices for quick medical diagnosis of various diseases ranging from cancer, allergies, autoimmune diseases, sexually transmitted diseases (STDs), and many others. The new technology may also drastically impact global health, due to its low cost and easiness of use, according to the research team. The rapid and easy-to-use diagnostic tests are made of DNA and use one of the simplest force in chemistry, steric effects - a repulsion force that arises when atoms are brought too close together - to detect a wide array of protein markers that are linked to various diseases.

The design was created by the research group of Alexis Vallée-Bélisle, a professor in the Department of Chemistry at University of Montreal. "Despite the power of current , a significant limitation is that they still require complex laboratory procedures. Patients typically must wait for days or even weeks to receive the results of their blood tests," Vallée-Bélisle said. "The blood sample has to be transported to a centralised lab, its content analyzed by trained personnel, and the results sent back to the doctor's office. If we can move testing to the point of care, or even at home, it would eliminates the lag time between testing and treatment, which would enhance the effectiveness of medical interventions.

The key breakthrough underlying this came by chance. "While working on the first generation of these DNA-base tests, we realised that proteins, despite their small size (typically 1000 times smaller than a human hair) are big enough to run into each other and create steric effect (or traffic) at the surface of a sensor, which drastically reduced the signal of our tests," said Sahar Mashid, postdoctoral scholar at the University of Montreal and first author of the study. "Instead of having to fight this basic repulsion effect, we instead decided to embrace this force and build a novel signaling mechanism, which detects steric effects when a protein marker binds to the DNA test."

The sensing principle is straightforward: the diagnostically relevant protein (green or red), if present, binds to an electro-active DNA strand, and limits the ability of this DNA to hybridize to its complementary strand located on the surface of a gold electrode. Francesco Ricci, a professor at University of Rome Tor Vergata who also participated in this study, explains that this novel signaling mechanism produces sufficient change in current to be measured using inexpensive electronics similar to those in the home glucose test meter used by diabetics to check their blood sugar. Using this DNA-base assay, the researchers were able to detect multiple directly in whole blood in fewer than 10 minutes, even if their concentration is 1,000 000 times less concentrated than glucose. "A great advantage of this DNA-based electrochemical test is that its sensing principle can be generalized to many different targets, allowing us to build inexpensive devices that could detect dozens of disease markers in less than five minutes in the doctor's office or even at home," concludes Vallée-Bélisle.

A patent has been submitted for this invention, and many other applications are envisaged, including pathogen detection in food or water and therapeutic drug monitoring at home, a feature which could drastically improve the efficient of various class of drugs and treatments.

Explore further: Pocket chemistry: DNA helps glucose meters measure more than sugar

More information: Vallée-Bélisle and his colleagues will publish the final version of "A highly selective electrochemical DNA-based sensor that employs steric hindrance effects to detect proteins directly in whole blood" in the Journal of the American Chemical Society on September 24, 2015. DOI: 10.1021/jacs.5b04942

Related Stories

Adapting personal glucose monitors to detect DNA

February 29, 2012

An inexpensive device used by millions of people with diabetes could be adapted into a home DNA detector that enables individuals to perform home tests for viruses and bacteria in human body fluids, in food and in other substances, ...

Bioengineers design rapid, easy-to-use diagnostic tests

September 28, 2012

(Phys.org)—By mimicking nature's own sensing mechanisms, bioengineers at UC Santa Barbara and University of Rome Tor Vergata have designed inexpensive medical diagnostic tests that take only a few minutes to perform. Their ...

DNA clamp to grab cancer before it develops

December 19, 2013

As part of an international research project, a team of researchers has developed a DNA clamp that can detect mutations at the DNA level with greater efficiency than methods currently in use. Their work could facilitate rapid ...

Recommended for you

Hitching a ride: Misfiring drugs hit the wrong targets

August 25, 2016

It probably isn't surprising to read that pharmaceutical drugs don't always do what they're supposed to. Adverse side effects are a well-known phenomenon and something many of us will have experienced when taking medicines.

New method developed for producing some metals

August 25, 2016

The MIT researchers were trying to develop a new battery, but it didn't work out that way. Instead, thanks to an unexpected finding in their lab tests, what they discovered was a whole new way of producing the metal antimony—and ...

Using light to control genome editing

August 25, 2016

The genome-editing system known as CRISPR allows scientists to delete or replace any target gene in a living cell. MIT researchers have now added an extra layer of control over when and where this gene editing occurs, by ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

katesisco
not rated yet Sep 23, 2015
What a marvelous innovation when combined with a robotic diagnostician. Your robodoc will be a fount of info about what this means.
adabrown
1 / 5 (1) Sep 25, 2015
Diagnose cost will be saved to a great scale, and can contribute to a better treatment for the diseases that require complicated inspection, which is the ultimate aim of all chemists. -BOC Sciences inhibitors

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.