'Golden' silver nanoparticle looks and behaves like gold

September 22, 2015 by Lisa Zyga feature
The ‘golden’ silver nanocluster with 25 silver atoms and 18 ligand molecules, (left) without a counterion and (right) with a counterion. The structures show silver atoms on the vertices of the icosahedron (green), silver atoms on the icosahedron faces (purple), sulfur atoms (yellow), carbon atoms (gray), and phosphorus atoms (red). Credit: Osman Bakr, KAUST

(Phys.org)—In an act of "nano-alchemy," scientists have synthesized a silver (Ag) nanocluster that is virtually identical to a gold (Au) nanocluster. On the outside, the silver nanocluster has a golden yellow color, and on the inside, its chemical structure and properties also closely mimic those of its gold counterpart. The work shows that it may be possible to create silver nanoparticles that look and behave like gold despite underlying differences between the two elements, and could lead to creating similar analogues between other pairs of elements.

The researchers, led by Osman Bakr, Associate Professor of Materials Science and Engineering at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia, have published the paper in a recent issue of the Journal of the American Chemical Society.

"In some aspects, this is very similar to alchemy, but we call it 'nano-alchemy,'" Bakr told Phys.org. "When we first encountered the optical spectrum of the silver nanocluster, we thought that we may have inadvertently switched the chemical reagents for silver with gold, and ended up with gold nanoparticles instead. But repeated synthesis and measurements proved that the clusters were indeed silver and yet show akin to gold. It was really surprising to us as scientists to find not only similarities in the color and , but also the X-ray structure."

Like all chemical elements, silver and gold are defined by their number of protons: silver has 47, and gold has 79. The work here doesn't change the number of protons in an atom of silver; otherwise it would no longer be considered silver. Instead, the researchers synthesized a nanocluster of 25 silver atoms, along with 18 other molecules called "ligands" that surround the silver atoms. The entire negatively charged, silver-based complex ion has the chemical formula [Ag25(SPhMe2)18]-.

Although a few other silver nanoclusters have been synthesized in recent years, this is the first silver nanocluster that has a matching analogue in gold: [Au25(SPhMe2)18]- has previously been reported. Besides both nanoclusters having 25 metal atoms and 18 ligands, they also both have all of their atoms and electrons arranged in almost exactly the same way.

In their study, the researchers performed tests demonstrating that the silver and have very similar optical properties. Typically, silver nanoclusters are brown or red in color, but this one looks just like gold because it emits light at almost the same wavelength (around 675 nm) as gold. The golden color can be explained by the fact that both nanoclusters have virtually identical crystal structures.

(Left) Optical properties of the silver and gold nanoclusters, with the inset showing photographs of the actual color of the synthesized nanoclusters. The graph shows the absorption (solid lines) and normalized emission (dotted lines) spectra. (Right) Various representations of the X-ray structure of the silver nanocluster. Credit: Joshi, et al. ©2015 American Chemical Society

The scientists investigated the silver nanocluster's crystal structure using X-ray diffraction, in which an X-ray beam strikes the crystallized structure and is reflected at various angles to create a diffraction pattern on a detector. This technique revealed that the silver nanocluster has one silver atom at the center of a 12-pointed-star-like shape called an icosahedron. While 12 of the other silver atoms form the 12 points, the remaining 12 silver atoms occupy some of the faces. This arrangement is almost exactly like that of the gold nanocluster, except that three of the atoms on the faces of the silver nanocluster are turned in a different direction. As far as the scientists can tell, the orientation of these three atoms is the only notable structural difference between the silver and gold nanoclusters, and it causes a slight distortion in the silver nanoclusters.

The question naturally arises: why are these silver and gold nanoclusters so similar, when individual atoms of silver and gold are very different, in terms of their optical and structural properties? As Bakr explained, the answer may have to do with the fact that, although larger in size, the nanoclusters behave like "superatoms" in the sense that their electrons orbit the entire nanocluster as if it were a single giant atom. These superatomic orbitals in the silver and gold nanoclusters are very similar, and, in general, an atom's electron configuration contributes significantly to its properties.

"The size scale of nanoparticles lies in between atoms/molecules and bulk material, where the absolute rule of neither quantum nor classical physics is observed," Bakr explained. "However, the Ag nanoparticle we synthesized was so small in size that it actually behaves a lot like an atom, i.e., a superatom. Since the structural framework of Ag25 is nearly identical to Au25, which makes similar atomic arrangements in 3D space, this special atomic arrangement allows for the hybridization of Ag atomic orbitals and ligand orbitals (the organic molecules surrounding the metal) in Ag25 to produce superatomic orbitals that are very similar to the well-known Au25 system. This could be the main reason for the similarities observed between the Ag and Au clusters, which may not be possible to achieve with individual atoms or bulk materials."

While the results here show that silver can acquire the properties of gold, the reverse may also be possible, with gold being synthesized to look and behave like silver.

"If silver can acquire properties of gold, there is no obvious reason why the reverse shouldn't be possible," Bakr said.

This duality, in which one type of atom acquires the properties of another, has the potential to offer unprecedented abilities in nanoscience research, and is one area that the scientists plan to investigate more in the future.

The researchers also hope that the results will lead to a better understanding of the fundamental differences between gold and silver. For instance, although both materials are lustrous metals, gold is relatively biocompatible and being researched for biomedicine, whereas is cytotoxic and used in antibacterial surface coatings. Questions like these may be answered by blurring the lines between the elements as we know them.

"Our future plan is to synthesize other sizes of gold clusters and other metal analogues of to explore whether these clusters would still show the behavior of gold or not," Bakr said. "Our goal is to find cheaper substitutes for gold in applications where nanoparticles are required."

Explore further: Gold and silver nano baubles

More information: Chakra P. Joshi, et al. "[Ag25(SR)18]-: The 'Golden' Silver Nanoparticle." Journal of the American Chemical Society. DOI: 10.1021/jacs.5b07088

Related Stories

Gold and silver nano baubles

December 3, 2010

They might just be the smallest Christmas tree decorations ever. Tiny spherical particles of gold and silver that are more than 100 million times smaller than the gold and silver baubles used to decorate seasonal fir trees ...

How many gold atoms make gold metal?

April 10, 2015

Researchers at the Nanoscience Center at the University of Jyväskylä, Finland, have shown that dramatic changes in the electronic properties of nanometre-sized chunks of gold occur in well-defined size range. Small gold ...

Nanosilver and the future of antibiotics

May 27, 2015

Precious metals like silver and gold have biomedical properties that have been used for centuries, but how do these materials effectively combat the likes of cancer and bacteria without contaminating the patient and the environment?

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

5 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

FredJose
not rated yet Sep 22, 2015
What about the electrical properties? Are those the same or similar? One would be led to believe that that is the case, given the results of the x-ray diffraction.
does this synthesis also affect the mechanical properties or is that not part of the nanostructure as observed here?
shavera
1 / 5 (1) Sep 22, 2015
Fred, from the actual paper (if you don't have access):
The implication from the theoretical study25,29 that Au and Ag have comparable optical and electronic behaviors is supported by our experimental observations here, indicating silver may be able to acquire the properties of gold and vice versa.
Alexander_IK
not rated yet Sep 22, 2015
I wonder what is the chemical stability of these clusters in comparison with golden ones? For example, the oxidation resistance.
KBK
not rated yet Sep 23, 2015
If you are interested in taking this further, look up the lecture posted in 2012 or so (youtube), from David Radius Hudson. He explains the alloy based analogs of the platinum metals group, and analogs coming from the pure elements of the platinum group.

The most interesting of all, is that slow temperature shifts could case the metals to shift in mass, and more interestingly, dimensional shifts! (invisibility and pass through!)They would go lower than original mass and even disappear and then return. All this is carefully plotted and explained in the lecture. The man spent $8M exploring this stuff and did indeed apply for the patents.

Probably the most staggering 'forbidden science' that is out there today with access to data --for people to look into, if they have what it takes.

As usual, we are re-covering ground that originally happened as far back as 12,000 years ago, by the alchemists of old. Some still want that information hidden, for it does indeed change things.
Pavel F
not rated yet Sep 28, 2015
#KBK. Thanks for the lead. Greetings.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.