World's quietest gas lets physicists hear faint quantum effects

August 4, 2015 by Robert Sanders
World's quietest gas lets physicists hear faint quantum effects
When the noise or entropy in a system is reduced, subtle information becomes visible, such as the faint word ‘Berkeley.’ Credit: Ryan Olf image.

Physicists at the University of California, Berkeley, have cooled a gas to the quietest state ever achieved, hoping to detect faint quantum effects lost in the din of colder but noisier fluids.

While the ultracold gas's - a billionth of a degree above - is twice as hot as the record cold, the gas has the lowest entropy ever measured. Entropy is a measure of disorder or noise in a system; a record low temperature gas isn't necessarily the least noisy.

"This 'lowest entropy' or 'lowest noise' condition means that the quantum gas can be used to bring forth subtle quantum mechanical effects which are a main target for modern research on materials and on many-body physics," said co-author Dan Stamper-Kurn, a UC Berkeley professor of physics. "When all is quiet and all is still, one might discern the subtle music of many-body quantum mechanics."

The quantum gas, a so-called Bose-Einstein condensate, consisted of about a million rubidium atoms trapped by a beam of light, isolated in a vacuum and cooled to their lowest energy state. The entropy and temperature were so low that the researchers had to develop a new type of thermometer to measure them.

While achieving extremely low temperatures may make the record books, UC Berkeley graduate student Ryan Olf said, what scientists aim for today are low-entropy states they can study to understand more interesting but difficult-to-study materials.

The UC Berkeley team's ability to manipulate ultracold, low-entropy gases will allow them to study these quantum systems, including quantum magnets - potentially useful in quantum computers - and high-temperature superconductors. High-temperature superconductors are experimental materials that display superconductivity - electrical flow without resistance - at relatively high temperatures compared to the 3 or 4 degrees Celsius above absolute zero typical of today's conventional superconductors.

World's quietest gas lets physicists hear faint quantum effects
In most ultracold Bose-Einstein Condensates (BEC), the quantum gas (yellow peak) is accompanied by normal gas jiggling with thermal noise (the blue hump below the peak). As the noise or entropy is decreased, however, the jiggling disappears to leave an almost pure quantum gas. Credit: Ryan Olf graphic.

"One of the holy grails of modern physics is to understand these exotic materials well enough to design one that is superconducting without requiring any cooling at all," Olf said. "By studying the properties of low-entropy gases in various configurations, our community of researchers hope to learn what makes these fascinating materials work the way they do."

Olf said that the entropy per particle, rather than the temperature, is the pertinent parameter when comparing systems, and the ultracold gases that had been produced until now struggled to reach the low entropies that would be required to test models of these materials.

"In a very real sense, this constitutes the coldest gas ever produced, at 50 times lower than the temperature at which quantum statistical effects become manifest, the Bose-Einstein condensation temperature," he said.

The details of the experiment were published online last month and will appear in a future print edition of the journal Nature Physics.

Reducing the rumble

Stamper-Kurn and his laboratory team chill gases to temperatures so low that quantum effects take over, which leads to strange "superfluid" behavior, such as frictionless flow. Superfluid helium is famous for climbing up and over the lip of a cup. Superfluid gases exhibit vortices - tiny tornadoes like those created when you stir a cup of coffee - that live forever.

At these low temperatures, Stamper-Kurn said, the low-energy excitations or jiggling of the atoms are sound waves. "Temperature generates something like a constant rumble of sound in the gas, and the entropy is like a count of how many sound-wave excitations remain. The colder a gas becomes, the less entropy it has and the quieter it is."

Normally, a Bose-Einstein condensate is a mixture of a quantum gas and a normal gas. Its temperature is determined by measuring the thermal properties of the normal gas. A low-entropy gas is almost all , however, so the team had to find a different way to measure the temperature. They did so by tilting the magnetization of the atomic spins and measuring thermal properties of the tilted magnetization, essentially creating a magnon thermometer.

The tilted spins also helped them cool the gas to its low-entropy state by enhancing the evaporative cooling that researchers have long relied on to produce ultracold gases. In addition to removing hot atoms to reduce the average temperature of the , they used evaporative cooling of the thermalized spins to reduce the temperature to 1 nanoKelvin (one-billionth of a degree above absolute zero), corresponding to an entropy 100 times lower than previous experiments, Olf said.

Explore further: Superfluids: Observation of 'second sound' in a quantum gas

More information: Thermometry and cooling of a Bose gas to 0.02 times the condensation temperature, Ryan Olf, Fang Fang, G. Edward Marti, Andrew MacRae & Dan M. Stamper-Kurn, Nature Physics (2015) DOI: 10.1038/nphys3408

Related Stories

Superfluids: Observation of 'second sound' in a quantum gas

May 15, 2013

Second sound is a quantum mechanical phenomenon, which has been observed only in superfluid helium. Physicists from the University of Innsbruck, Austria, in collaboration with colleagues from the University of Trento, Italy, ...

Cold atom laboratory chills atoms to new lows

September 29, 2014

(Phys.org) —NASA's Cold Atom Laboratory (CAL) mission has succeeded in producing a state of matter known as a Bose-Einstein condensate, a key breakthrough for the instrument leading up to its debut on the International ...

Cooling with the coldest matter in the world

November 24, 2014

Physicists at the University of Basel have developed a new cooling technique for mechanical quantum systems. Using an ultracold atomic gas, the vibrations of a membrane were cooled down to less than 1 degree above absolute ...

Black hole thermodynamics

September 10, 2014

In the 1800s scientists studying things like heat and the behavior of low density gases developed a theory known as thermodynamics. As the name suggests, this theory describes the dynamic behavior of heat (or more generally ...

Physicists discover quantum-mechanical monopoles

April 30, 2015

Researchers at Aalto University (Finland) and Amherst College have observed a point-like monopole in a quantum field itself for the first time. This discovery connects to important characteristics of the elusive monopole ...

Recommended for you

Electron highway inside crystal

December 8, 2016

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their ...

Researchers improve qubit lifetime for quantum computers

December 8, 2016

An international team of scientists has succeeded in making further improvements to the lifetime of superconducting quantum circuits. An important prerequisite for the realization of high-performance quantum computers is ...

5 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

inkosana
not rated yet Aug 05, 2015
A trapped light-wave within a perfectly reflecting cavity has a temperature that is equal to absolute zero and it has no entropy: Only fluctuations in energy (delta)E for limited time intervals (delta)t.These energy-fluctuations are each on loan and do thus not contribute to temperature and entropy. Such a light-wave can be in principle created at any temperature that the resonant-cavity has, as long as the cavity is perfectly reflecting. That this must be so follows directly from Maxwell's equations when solving them subject to the correct boundary-conditions: i.e. that a light-wave has no aether. ..
Blakut
2.3 / 5 (3) Aug 05, 2015
I read fart at first. LoL
swordsman
not rated yet Aug 05, 2015
"Entropy of a particle"? Better go back and learn the definition of entropy.
docile
Aug 05, 2015
This comment has been removed by a moderator.
inkosana
not rated yet Aug 07, 2015
"Entropy of a particle"? Better go back and learn the definition of entropy.


Where did I claim entropy of a single "particle"? Are you a dickhead?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.