Black hole thermodynamics

Black hole thermodynamics
Simulation of a black hole merger. Credit: NASA/Chandra

In the 1800s scientists studying things like heat and the behavior of low density gases developed a theory known as thermodynamics. As the name suggests, this theory describes the dynamic behavior of heat (or more generally energy). The core of thermodynamics is embodied by its four basic laws.

The zeroth states that if object A is in thermodynamic equilibrium with object B (meaning no net energy flows between them), and object C is in thermodynamic equilibrium with B, then A and C are in thermodynamic equilibrium with each other. Since objects in thermodynamic equilibrium have the same temperature, another way to state this law is that if A has the same temperature as B, and C has the same temperature as B, then A and C have the same temperature. When you put it that way it seems quite obvious, which is why it isn't known as the first law. The other laws were developed first, and as they were refined it became clear the zeroth law should be included as a physical property, not just an assumption.

The first law states that energy is conserved. Since heat is a form of energy, this means an object that is heating up must be getting energy from somewhere. Likewise, if an object is cooling down, the energy it loses must be gained by something else. Conservation of energy was known before , but this law recognized heat as a form of energy.

The second law is perhaps the most misunderstood law of thermodynamics. In its simplest form it can be summarized as "heat flows from hot objects to cold objects". But the law is more useful when it is expressed in terms of entropy. In this way it is stated as "the entropy of a system can never decrease." Many people interpret entropy as the level of disorder in a system, or the unusable part of a system. That would mean things must always become less useful over time, which is why evolution skeptics often claim it violates the second law of thermodynamics.

But entropy is really about the level of information you need to describe a system. An ordered system (say, marbles evenly spaced in a grid) is easy to describe because the objects have simple relations to each other. On the other hand, a disordered system (marbles randomly scattered) take more information to describe, because there isn't a simple pattern to them. So when the second law says that entropy can never decrease, it is say that the physical information of a system cannot decrease. In other words, information cannot be destroyed.

The third law basically states that at absolute zero an object is at its minimum possible entropy (often taken as zero). One consequence of this law is that you cannot cool an object to absolute zero.

In an earlier post I wrote about how classical have "no hair", meaning that they are simply described by their mass, charge and rotation. Because of this, you could toss an object (with a great deal of entropy) into a black hole, and the entropy would simply go away. In other words, the entropy of the system would get smaller, which would violate the second law of thermodynamics. Another way of looking at it would be that the classical black hole has a temperature of absolute zero. This means you could take some hot mass and collapse it into a black hole, which would essentially be cooling an object to absolute zero, in violation of the third law of thermodynamics.

Of course, this ignores the effects of quantum mechanics. When we take quantum mechanics into account, black holes can emit light and other particles through a process known as Hawking radiation. Since a "quantum" black hole emits heat and light, it therefore has a temperature. This means black holes are subject to the laws of thermodynamics.

Integrating general relativity, and thermodynamics into a comprehensive description of black holes is quite complicated, but the basic properties can be expressed as a fairly simple set of rules known as black hole thermodynamics. Essentially these are the laws of thermodynamics re-expressed in terms of properties of black holes.

The zeroth law states that a simple, non-rotating black hole has uniform gravity at its . This is kind of like saying that such a black hole is at thermal equlibrium.

The first law relates the mass, rotation and charge of a black hole to its entropy. The entropy of a black hole is then related to the surface area of its event horizon.

The second law again states that the entropy of a black hole system cannot decrease. One consequence of this is that when two black holes merge, the surface area of the merged event horizon must be greater than the surface areas of the original black holes.

The third law states that "extreme" black holes (those with a maximum possible rotation or charge) would have minimum entropy. This means that it would never be possible to form an extreme black hole. For example, it would never be possible to spin a black hole so fast that it would break apart.

The advantage of black hole thermodynamics is that provides a way to get a handle on the complex interactions black holes can have. Thermodynamic black holes have not just mass, charge and rotation, but also temperature and . The rules first devised to describe the heating and cooling of simple gases also seems to apply to black holes.

But there are things we still don't understand about black hole thermodynamics. I'll talk about those next time.


Explore further

Seeking proof for the no-hair theorem

Source: One Universe at a Time

This story is republished courtesy of One Universe at a Time (briankoberlein.com), where you can find daily posts on astronomy and astrophysics.

Citation: Black hole thermodynamics (2014, September 10) retrieved 26 May 2019 from https://phys.org/news/2014-09-black-hole-thermodynamics.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
5 shares

Feedback to editors

User comments

Sep 10, 2014
Next in the series...
'The Thermodynamics of Unicorns'

Sep 10, 2014
This comment has been removed by a moderator.

Sep 10, 2014
This comment has been removed by a moderator.

Sep 10, 2014
Wow. "Since heat is a form of energy..." No. Heat is the flow of energy.


Skippy Wow, you might not want to let a lot peoples see that ol Ira is the one correcting you with the science stuffs.

Heat is too a form of energy. Heat-ing is the transferring of the energy in the forms of heat. I learn this going to community college to study the BIG diesel engines me. We use the joules to measure heat when we want to talk about how efficient our engines are working. Diesels is a kind of heat engine. We use the joules/second to talk about how much heat can be used for good stuff in the diesel engines when they produce heat. from burning fuels. We used to only say it in horsepower but now we are starting to use the kW (that means 1000 joules/second). But the bottom line is we are still talking about the heat the engine produces. The engines on the boat I work now 3060 kW x 2 of them. Heat is measured in the joules (energy) or if you are really old and out of date calories.

Sep 10, 2014
Among other things, as I've noted before, this article is phrased with absolute certainty about "black hole thermodynamics", even though no such experiments have ever actually been done to verify that! Note that the article talks about heat flowing from hot to cold objects is an imprecise way to under stand the entropy law of thermodynamics, then asserts the information interpretation, as if even that is necessarily a more precise way to think of entropy. Note, for example, ordered and disordered marbles on a grid, invoked in the article, are at equal entropy thermodynamically, even if, supposedly, more information is needed to describe the disordered marbles. And, if the "universe" is actually viewed as part of an even larger system, energy can leave one through a black hole and go to the other and not be lost. And if matter falling in a black hole is viewed as lost, then "Hawking radiation" is a loss of mass and so is not radiation.

Sep 10, 2014
Personally, I try to avoid black holes, if at all possible.

Sep 10, 2014
Any examples of observed Hawking Radiation emanating from any object purported to be a BH?


No and you know that. You also know why. Pointing to predictions beyond current instrumentation isn't an argument. But why don't you ask about other tests? Relativistic orbits with Sagittarius A* and SMBH binaries, the inner most stable orbit and it's corresponding accretion temperature observe red in smaller black holes in x-rays and now with VLBI on SMBH. Several predictions made by black hole physics, later confirmed. This article as another example.

Sep 11, 2014
no fate wrote, "You can't prove shit."

Qualifier: "You can't prove shit to the troll known as 'no fate.'"

Because said troll accepts evidence only when it fits into his world-view. All other evidence need not apply.

yep
Sep 11, 2014
We'll I've got a black hole testing machine I'll sell you!

Sep 11, 2014
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more