Team claims to have created a sample of stanene

August 5, 2015 by Bob Yirka report
Atomic structure model for the 2D stanene on Bi2Te3(111). Credit: Nature Materials (2015) doi:10.1038/nmat4384

(—A team of researchers with members from Stanford University and several institutions in China is claiming to have found a way to create a sample of stanene—a one-atom thick mesh (buckled honeycomb) of tin that theories have predicted could be used to conduct electricity with zero loss due to heat. In their paper published in the journal Nature Materials, the team describes the process they used to create their sample and the problems they encountered when trying to test its conductivity.

Graphene has been in the news a lot of late, as scientists have found many uses for it—the one-atom thick sheets of carbon have excellent electrical (and other) properties. But even as research with graphene continues, other scientists have been looking for a way to create stanene (which was predicted to possibly exist just two years ago) because it is believed it could be used to drastically improve the process by which electricity is used in electronics. Electrons, it is believed could travel through the material at without bumping into other electrons, as occurs with other materials, causing vibrations, resulting in heat—and loss of energy from the medium. With stanene, the electrons would travel along just the edges of the mesh—it could not get into the center because of properties—making it a . If theories about stanene turn out to be true, wires could be made that would carry great distances from a source to a destination without energy losses, for example, or phones and their chargers could operate without getting hot.

To make their sample, the researchers vaporized a bit of tin inside of a vacuum chamber allowing it to form its characteristic mesh on a bismuth telluride surface. The team was able to see only the top ridges of the structure with a scanning tunneling microscope, however and believe the substrate interacted with the mesh, preventing conductivity testing. In order to get a better view, the team acknowledges that they will have to create a bigger sample. Others have already suggested that it might be possible to confirm the structure of the material using X-ray diffraction.

Explore further: Theorists predict new state of quantum matter may have big impact on electronics

More information: Epitaxial growth of two-dimensional stanene, Nature Materials (2015) DOI: 10.1038/nmat4384

Following the first experimental realization of graphene, other ultrathin materials with unprecedented electronic properties have been explored, with particular attention given to the heavy group-IV elements Si, Ge and Sn. Two-dimensional buckled Si-based silicene has been recently realized by molecular beam epitaxy growth, whereas Ge-based germanene was obtained by molecular beam epitaxy and mechanical exfoliation. However, the synthesis of Sn-based stanene has proved challenging so far. Here, we report the successful fabrication of 2D stanene by molecular beam epitaxy, confirmed by atomic and electronic characterization using scanning tunnelling microscopy and angle-resolved photoemission spectroscopy, in combination with first-principles calculations. The synthesis of stanene and its derivatives will stimulate further experimental investigation of their theoretically predicted properties, such as a 2D topological insulating behaviour with a very large bandgap, and the capability to support enhanced thermoelectric performance, topological superconductivity and the near-room-temperature quantum anomalous Hall effect.

Related Stories

Will 2-D tin be the next super material?

November 21, 2013

A single layer of tin atoms could be the world's first material to conduct electricity with 100 percent efficiency at the temperatures that computer chips operate, according to a team of theoretical physicists led by researchers ...

The future of electronics—now in 2-D

February 14, 2015

The future of electronics could lie in a material from its past, as researchers from The Ohio State University work to turn germanium—the material of 1940s transistors—into a potential replacement for silicon.

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Aug 06, 2015
I don't get it. Would this have zero resistance? Wouldn't that be the same as a room temperature superconductor?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.