Theoretical physicists design 'holy grail' of materials science

March 11, 2015 by Monica Van Der Garde, Utrecht University
Theoretical physicists design ‘holy grail’ of materials science
Honeycomb nanoribbon formed by the HgTe nanocrystals. Red and blue colours correspond to top and bottom edge for spin up, bottom and top edge for spin down, respectively. Credit: Utrecht University

Physicists of Utrecht University and their French colleagues have theorized the 'holy grail' of material science. It's a material that should exhibit a unique combination of the exceptional electronic properties of graphene with the important properties that graphene misses at room temperature. "If we manage to synthesize this 'holy grail' and it exhibits the theoretically predicted properties, a new field of research and applications opens up we can't fathom yet," says Prof. Cristiane Morais Smith from Utrecht University. Their findings are published in Nature Communications on 10 March 2015.

Graphene is a form of carbon in which the atoms are connected in a honeycomb structure. The possible 'holy grail' has this same structure, but is made of nanocrystals of mercury and tellurium. In their paper, the show that this material combines the properties of with the qualities graphene lacks. At room temperature, it is a semiconductor instead of a conductor, so that it can be used as a field-effect transistor. And it fulfills the conditions required to realise quantum spintronics, because it may host the quantum spin Hall effect at room temperature.

Quantum spin Hall effect and a honeycomb structure

Graphene, which was produced for the first time in 2003, is the first material discovered in which electrons move as if they have no mass. This is caused by the honeycomb structure of the Carbon atoms, which induces the electrons to behave as relativistic particles. However, it cannot realise the exotic quantum spin Hall effect, not even at very low temperatures. In their search for the holy grail, the challenge for the theoretical physicists was to find a way to shape a material with the potential to realise the quantum spin Hall effect at room temperature in a honeycomb structure.

Mercury tellurate

The quantum spin Hall effect, which was predicted in 1971, was only realised experimentally in 2006 by Prof. Laurens Molenkamp of the University of Würzburg and his team. They used mercury telluride/cadmium telluride quantum wells at a very low temperature. This inspired the theoretical physicists to design several honeycomb structures of mercury telluride nanocrystals and calculate their properties. Several structures turned out to have all the properties they were looking for. At Utrecht University, Prof. Daniël Vanmaekelbergh has already managed to synthesize this kind of by using cadmium-selenide .

Realizing the holy grail

"However, at the moment, Prof. Laurens Molenkamp is the only expert in the world working with mercury telluride. So we are happy that he is very interested in synthesizing the honeycomb structures we designed with mercury telluride," says Prof. Cristiane Morais Smith from Utrecht University. "Although it is not yet possible to realise it experimentally, he expects that the technology necessary will be available within a short time, given the developments that are going on in his lab right now. If we succeed in synthesizing it and the material indeed exhibits the unique combination of exotic properties at as we predicted, a field of fundamental research and technological innovations opens up that lies beyond our imagination."


For one thing, it could be used in spintronics, a technology that may be the next step in speeding up computers and the Internet. In spintronics, the electron 'spin' is used instead of the electric charge. Spin up and spin down are used to describe whether electrons rotate clockwise or counter-clockwise. If all electrons with spin up move to the left and all electrons with spin down to the right, then they create a spin current instead of an electric current. Spin currents can interact with nanomagnets and lead to applications in the context of fast reading and writing of magnetic memories.

Explore further: Fractional quantum Hall effect: Experimental progress and quantum computing applications

More information: Topological states in multi-orbital HgTe honeycomb lattices, W. Beugeling, E. Kalesaki, C. Delerue, Y.-M. Niquet, D. Vanmaekelbergh, and C. Morais Smith, Nature Communications, 10 March 2015, DOI: 10.1038/ncomms7316

Related Stories

A novel platform for future spintronic technologies

October 12, 2014

Spintronics is an emerging field of technology where devices work by manipulating the spin of electrons rather than their charge. The field can bring significant advantages to computer technology, combining higher speeds ...

Probing electron behaviour at the tips of nanocones

February 5, 2015

One of the ways of improving electrons manipulation is though better control over one of their inner characteristics, called spin. This approach is the object of an entire field of study, known as spintronics. Now, Richard ...

Researchers make magnetic graphene

January 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic impurities, ...

Scientists resolve spin puzzle

December 10, 2014

Scientists at the University of York have helped to uncover the properties of defects in the atomic structure of magnetite, potentially opening the way for its use in producing more powerful electronic devices.

Recommended for you

Scientists produce 3-D chemical maps of single bacteria

November 16, 2018

Scientists at the National Synchrotron Light Source II (NSLS-II)—a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory—have used ultrabright x-rays to image single bacteria ...

Bursting bubbles launch bacteria from water to air

November 15, 2018

Wherever there's water, there's bound to be bubbles floating at the surface. From standing puddles, lakes, and streams, to swimming pools, hot tubs, public fountains, and toilets, bubbles are ubiquitous, indoors and out.

Terahertz laser pulses amplify optical phonons in solids

November 15, 2018

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons ...

Quantum science turns social

November 15, 2018

Researchers in a lab at Aarhus University have developed a versatile remote gaming interface that allowed external experts as well as hundreds of citizen scientists all over the world to optimize a quantum gas experiment ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.