Ocean acidification may cause dramatic changes to phytoplankton

July 20, 2015 by Jennifer Chu

Oceans have absorbed up to 30 percent of human-made carbon dioxide around the world, storing dissolved carbon for hundreds of years. As the uptake of carbon dioxide has increased in the last century, so has the acidity of oceans worldwide. Since pre-industrial times, the pH of the oceans has dropped from an average of 8.2 to 8.1 today. Projections of climate change estimate that by the year 2100, this number will drop further, to around 7.8—significantly lower than any levels seen in open ocean marine communities today.

Now a team of researchers from MIT, the University of Alabama at Birmingham, and elsewhere has found that such increased ocean acidification will dramatically affect global populations of phytoplankton—microorganisms on the ocean surface that make up the base of the marine food chain.

In a study published today in the journal Nature Climate Change, the researchers report that increased ocean acidification by 2100 will spur a range of responses in phytoplankton: Some species will die out, while others will flourish, changing the balance of plankton species around the world.

The researchers also compared phytoplankton's response not only to ocean acidification, but also to other projected drivers of climate change, such as warming temperatures and lower nutrient supplies. For instance, the team used a numerical model to see how phytoplankton as a whole will migrate significantly, with most populations shifting toward the poles as the planet warms. Based on global simulations, however, they found the most dramatic effects stemmed from ocean acidification.

Stephanie Dutkiewicz, a principal research scientist in MIT's Center for Global Change Science, says that while scientists have suspected ocean acidification might affect marine populations, the group's results suggest a much larger upheaval of phytoplankton—and therefore probably the species that feed on them—than previously estimated.

"I've always been a total believer in , and I try not to be an alarmist, because it's not good for anyone," says Dutkiewicz, who is the paper's lead author. "But I was actually quite shocked by the results. The fact that there are so many different possible changes, that different phytoplankton respond differently, means there might be some quite traumatic changes in the communities over the course of the 21st century. A whole rearrangement of the communities means something to both the food web further up, but also for things like cycling of carbon."

The paper's co-authors include Mick Follows, an associate professor in MIT's Department of Earth, Atmospheric and Planetary Sciences.

Winners and losers

To get a sense for how individual species of phytoplankton react to a more acidic environment, the team performed a meta-analysis, compiling data from 49 papers in which others have studied how single species grow at lower pH levels. Such experiments typically involve placing organisms in a flask and recording their biomass in solutions of varying acidity.

In all, the papers examined 154 experiments of phytoplankton. The researchers divided the species into six general, , including diatoms, Prochlorococcus, and coccolithophores, then charted the growth rates under more acidic conditions. They found a whole range of responses to increasing acidity, even within functional groups, with some "winners" that grew faster than normal, while other "losers" died out.

The largely reflected individual species' response in a controlled laboratory environment. The researchers then worked the experimental data into a model to see how multiple species, competing with each other, responded to rising acidity levels.

The researchers paired MIT's global circulation model—which simulates physical phenomena such as ocean currents, temperatures, and salinity—with an ecosystem model that simulates the behavior of 96 species of phytoplankton. As with the experimental data, the researchers grouped the 96 species into six functional groups, then assigned each group a range of responses to ocean acidification, based on the ranges observed in the experiments.

Natural competition off balance

After running the global simulation several times with different combinations of responses for the 96 species, the researchers observed that as ocean acidification prompted some species to grow faster, and others slower, it also changed the natural competition between species.

"Normally, over evolutionary time, things come to a stable point where multiple species can live together," Dutkiewicz says. "But if one of them gets a boost, even though the other might get a boost, but not as big, it might get outcompeted. So you might get whole species just disappearing because responses are slightly different."

Dutkiewicz says shifting competition at the plankton level may have big ramifications further up in the food chain.

"Generally, a polar bear eats things that start feeding on a diatom, and is probably not fed by something that feeds on Prochlorococcus, for example," Dutkiewicz says. "The whole is going to be different."

By 2100, the local composition of the oceans may also look very different due to warming water: The model predicts that many phytoplankton species will move toward the poles. That means that in New England, for instance, marine communities may look very different in the next century.

"If you went to Boston Harbor and pulled up a cup of water and looked under a microscope, you'd see very different species later on," Dutkiewicz says. "By 2100, you'd see ones that were living maybe closer to North Carolina now, up near Boston."

Dutkiewicz says the model gives a broad-brush picture of how may change the marine world. To get a more accurate picture, she says, more experiments are needed, involving multiple species to encourage competition in a natural environment.

"Bottom line is, we need to know how competition is important as oceans become more acidic," she says.

Explore further: Ocean algae will cope well in varying climates, study shows

More information: Nature Climate Change (2015) DOI: 10.1038/nclimate2722

Related Stories

How will ocean acidification impact marine life?

February 3, 2015

Many marine organisms—such as coral, clams, mussels, sea urchins, barnacles, and certain microscopic plankton—rely on equilibrated chemical conditions and pH levels in the ocean to build their calcium-based shells and ...

Seafood supply altered by climate change

July 1, 2015

The global supply of seafood is set to change substantially and many people will not be able to enjoy the same quantity and dishes in the future due to climate change and ocean acidification, according to UBC scientists.

Recommended for you

Scientists examine bacterium found 1,000 feet underground

December 8, 2016

Pioneering work being carried out in a cave in New Mexico by researchers at McMaster University and The University of Akron, Ohio, is changing the understanding of how antibiotic resistance may have emerged and how doctors ...

6 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

aksdad
1.7 / 5 (6) Jul 20, 2015
I've always been a total believer in climate change, and I try not to be an alarmist, because it's not good for anyone

Oh, really? If, in fact, you are not an alarmist you would:

1. give virtually no credence to "meta-analysis" papers which simply compound errors that may exist in the papers being "analyzed" and produce no useful results,
2. question the usefulness of tests that suddenly subject phytoplankton to a seawater environment markedly different than what they're used to rather than gradually change the pH over time as happens in the natural environment,
3. wonder why phytoplankton wouldn't adapt to such a gradual change in pH level over the coming decades when they are already well-adapted to much larger seasonal changes.

And ocean pH declining from 8.2 to 8.1 (-0.1)? Sure, if you only measure from 1988. 80 years of instrument data prior to 1988 shows pH cyclically increasing and decreasing at least twice by +/- 0.3 before 1988.
aksdad
2 / 5 (4) Jul 20, 2015
The thing about a "meta-analysis" study is that the authors can choose to exclude studies that disagree with their assumptions.

In this recent study published in Nature, algae was allowed to evolve over 400 generations and tested in differing pH environments. The conclusion? Phytoplankton is far more resilient than was supposed by Stephanie Dutkiewicz and others.

See here:
http://phys.org/n...tes.html
Returners
1.7 / 5 (6) Jul 20, 2015
"The plankton will will be fine." - Freeman Dy...I mean ME!

Look, plankton has been around as one of the oldest types of organisms. It survived the Triassic an Jurrassic, when CO2 levels were as much as 4 times higher, and volcanism was simultaneously much higher, giving a much higher sulfur level. No-doubt the oceans were far more acidic than even the worst imaginable scenario by AGW alarmists....yet here we have the phytoplanktons and all the other microbes which also survived the K-T event after surviving these tens of millions of years of at least 4 times worse acidification.

You know, before you go being alarmist about the future of microbes, perhaps it would be a good idea to study their history.

These things have already been to hell and back, repeatedly, throughout geological time, and anything man can throw at them pales in comparison to what Earth plus a few asteroids have done to them at some time or another.
Egleton
3 / 5 (2) Jul 20, 2015
Sweet. Algae will be winners.
antigoracle
1 / 5 (1) Jul 22, 2015
I'm still waiting for AGW Cult "science" to explain how a warming ocean can absorb more CO2.
Osiris1
not rated yet Aug 11, 2015
The phytoplankton generate up to 25 percent of all the oxygen in the atmosphere. Lose that and it may be a long time coming back. We humans may find it hard to breathe.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.