Chemists devise technology that could transform solar energy storage

June 19, 2015 by Melody Pupols
The scientists devised a new arrangement of solar cell ingredients, with bundles of polymer donors (green rods) and neatly organized fullerene acceptors (purple, tan). Credit: UCLA Chemistry

The materials in most of today's residential rooftop solar panels can store energy from the sun for only a few microseconds at a time. A new technology developed by chemists at UCLA is capable of storing solar energy for up to several weeks—an advance that could change the way scientists think about designing solar cells.

The findings are published June 19 in the journal Science.

The new design is inspired by the way that plants generate energy through photosynthesis.

"Biology does a very good job of creating energy from sunlight," said Sarah Tolbert, a UCLA professor of chemistry and one of the senior authors of the research. "Plants do this through photosynthesis with extremely high efficiency."

"In photosynthesis, plants that are exposed to sunlight use carefully organized nanoscale structures within their cells to rapidly separate charges—pulling electrons away from the positively charged molecule that is left behind, and keeping positive and negative charges separated," Tolbert said. "That separation is the key to making the process so efficient."

To capture energy from sunlight, conventional rooftop solar cells use silicon, a fairly expensive material. There is currently a big push to make lower-cost solar cells using plastics, rather than silicon, but today's are relatively inefficient, in large part because the separated positive and negative electric charges often recombine before they can become electrical energy.

"Modern plastic solar cells don't have well-defined structures like plants do because we never knew how to make them before," Tolbert said. "But this new system pulls charges apart and keeps them separated for days, or even weeks. Once you make the right structure, you can vastly improve the retention of energy."

The two components that make the UCLA-developed system work are a polymer donor and a nano-scale acceptor. The polymer donor absorbs sunlight and passes electrons to the fullerene acceptor; the process generates electrical energy.

The plastic materials, called organic photovoltaics, are typically organized like a plate of cooked pasta—a disorganized mass of long, skinny polymer "spaghetti" with random fullerene "meatballs." But this arrangement makes it difficult to get current out of the cell because the electrons sometimes hop back to the polymer spaghetti and are lost.

The UCLA technology arranges the elements more neatly—like small bundles of uncooked spaghetti with precisely placed meatballs. Some fullerene meatballs are designed to sit inside the spaghetti bundles, but others are forced to stay on the outside. The fullerenes inside the structure take electrons from the polymers and toss them to the outside fullerene, which can effectively keep the electrons away from the polymer for weeks.

"When the charges never come back together, the system works far better," said Benjamin Schwartz, a UCLA professor of chemistry and another senior co-author. "This is the first time this has been shown using modern synthetic organic photovoltaic materials."

In the new system, the materials self-assemble just by being placed in close proximity.

"We worked really hard to design something so we don't have to work very hard," Tolbert said.

The new design is also more environmentally friendly than current technology, because the materials can assemble in water instead of more toxic organic solutions that are widely used today.

"Once you make the materials, you can dump them into water and they assemble into the appropriate structure because of the way the materials are designed," Schwartz said. "So there's no additional work."

The researchers are already working on how to incorporate the technology into actual .

Yves Rubin, a UCLA professor of chemistry and another senior co-author of the study, led the team that created the uniquely designed molecules. "We don't have these materials in a real device yet; this is all in solution," he said. "When we can put them together and make a closed circuit, then we will really be somewhere."

For now, though, the UCLA research has proven that inexpensive photovoltaic can be organized in a way that greatly improves their ability to retain from sunlight.

Explore further: Improving the efficiency of solar energy cells

More information: Long-lived photoinduced polaron formation in conjugated polyelectrolyte-fullerene assemblies Science 19 June 2015: Vol. 348 no. 6241 pp. 1340-1343. DOI: 10.1126/science.aaa6850

Related Stories

Improving the efficiency of solar energy cells

June 16, 2015

University of Adelaide chemistry researchers are studying energy loss at the molecular level of new 'plastic' materials as a step towards the development of highly efficient, low-cost and flexible solar energy cells.

Team improves solar-cell efficiency

September 19, 2014

New light has been shed on solar power generation using devices made with polymers, thanks to a collaboration between scientists in the University of Chicago's chemistry department, the Institute for Molecular Engineering, ...

UCLA scientists double efficiency of novel solar cell

July 29, 2013

Nearly doubling the efficiency of a breakthrough photovoltaic cell they created last year, UCLA researchers have developed a two-layer, see-through solar film that could be placed on windows, sunroofs, smartphone displays ...

Recommended for you

Hydrogen from sunlight—but as a dark reaction

December 9, 2016

The storage of photogenerated electric energy and its release on demand are still among the main obstacles in artificial photosynthesis. One of the most promising, recently identified photocatalytic new materials is inexpensive ...

Cloud formation—how feldspar acts as ice nucleus

December 9, 2016

In the atmosphere, feldspar particles act as ice nuclei that make ice crystals grow in clouds and enable precipitation. The discovery was made by researchers of Karlsruhe Institute of Technology (KIT) and University College ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
5 / 5 (4) Jun 19, 2015
"We worked really hard to design something so we don't have to work very hard," Tolbert said.

The credo of the true engineer :-)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.