Researchers make magnetic graphene

January 26, 2015
Graphene is a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice. UC Riverside physicists have found a way to induce magnetism in graphene while also preserving graphene's electronic properties. Credit: Shi Lab, UC Riverside.

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic impurities, but this doping tends to disrupt graphene's electronic properties.

Now a team of physicists at the University of California, Riverside has found an ingenious way to induce magnetism in while also preserving graphene's electronic properties. They have accomplished this by bringing a graphene sheet very close to a magnetic insulator - an electrical insulator with magnetic properties.

"This is the first time that graphene has been made magnetic this way," said Jing Shi, a professor of physics and astronomy, whose lab led the research. "The magnetic graphene acquires new so that new quantum phenomena can arise. These properties can lead to new electronic devices that are more robust and multi-functional."

The finding has the potential to increase graphene's use in computers, as in computer chips that use electronic spin to store data.

Study results appeared online earlier this month in Physical Review Letters.

The magnetic insulator Shi and his team used was yttrium iron garnet grown by laser in his lab. The researchers placed a single-layer graphene sheet on an atomically smooth layer of yttrium iron garnet. They found that yttrium iron garnet magnetized the graphene sheet. In other words, graphene simply borrows the from yttrium iron garnet.

Magnetic substances like iron tend to interfere with graphene's electrical conduction. The researchers avoided those substances and chose yttrium iron garnet because they knew it worked as an electric insulator, which meant that it would not disrupt graphene's electrical transport properties. By not doping the graphene sheet but simply placing it on the layer of yttrium iron garnet, they ensured that graphene's excellent electrical transport properties remained unchanged.

In their experiments, Shi and his team exposed the graphene to an . They found that graphene's Hall voltage - a voltage in the perpendicular direction to the current flow - depended linearly on the magnetization of yttrium iron garnet (a phenomenon known as the anomalous Hall effect, seen in magnetic materials like iron and cobalt). This confirmed that their had turned magnetic.

Explore further: Scientists make magnetic new graphene discovery

More information: Physical Review Letters, journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.016603

Related Stories

Scientists make magnetic new graphene discovery

April 14, 2011

(PhysOrg.com) -- University of Maryland researchers have discovered a way to control magnetic properties of graphene that could lead to powerful new applications in magnetic storage and magnetic random access memory.

Graphene's multi-colored butterflies

June 1, 2014

Combining black and white graphene can change the electronic properties of the one-atom thick materials, University of Manchester researchers have found.

On the edge of graphene

August 11, 2014

Researchers at the National Physical Laboratory (NPL) have discovered that the conductivity at the edges of graphene devices is different to the central material.

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.