Rounded crystals that mimic starfish shells could advance 3-D printing pills

October 20, 2014
Facetless crystals that mimic starfish shells could advance 3-D-printing pills

In a design that mimics a hard-to-duplicate texture of starfish shells, University of Michigan engineers have made rounded crystals that have no facets.

"We call them nanolobes. They look like little hot air balloons that are rising from the surface," said Olga Shalev, a doctoral student in and engineering who worked on the project.

Both the nanolobes' shape and the way they're made have promising applications, the researchers say. The geometry could potentially be useful to guide light in advanced LEDs, and nonreflective surfaces.

A layer might help a material repel water or dirt. And the process used to manufacture them—organic vapor jet printing—might lend itself to 3D-printing medications that absorb better into the body and make personalized dosing possible.

The nanoscale shapes are made out of boron subphthalocyanine chloride, a material often used in . It's in a family of small molecular compounds that tend to make either flat films or faceted crystals with sharp edges, says Max Shtein, U-M associate professor of , macromolecular science and engineering, chemical engineering, and art and design.

"In my years of working with these kinds of materials, I've never seen shapes that looked like these. They're reminiscent of what you get from biological processes," Shtein said. "Nature can sometimes produce crystals that are smooth, but engineers haven't been able to do it reliably."

The video will load shortly
In designs that mimic the texture of starfish shells, Michigan engineers have had made curved ordered crystals. Such shapes are found readily in nature, but not in a lab. Crystals engineers typically make either have facets with flat surfaces and hard angles, or are smooth but lack a repeating molecular order. The researchers call them "nanolobes."

Echinoderm sea creatures such as brittle stars have ordered rounded structures on their bodies that work as lenses to gather light into their rudimentary eyes. But in a lab, crystals composed of the same minerals tend either to be faceted with flat faces and sharp angles, or smooth, but lacking molecular order.

The U-M researchers made the curved crystals by accident several years ago. They've since traced their steps and figured out how to do it on purpose.

In 2010, Shaurjo Biswas, then a doctoral student at U-M, was making solar cells with the organic vapor jet printer. He was recalibrating the machine after switching between materials. Part of the recalibration process involves taking a close look at the fresh layers of material, of films, printed on a plate.

Biswas X-rayed several films of different thicknesses to observe the crystal structure. He noticed that the boron subphthalocyanine chloride, which typically does not form ordered shapes, started to do so once the film got thicker than 600 nanometers. He made some thicker films to see what would happen.

"At first, we wondered if our apparatus was functioning properly," Shtein said.

At 800 nanometers thick, the repeating nanolobe pattern emerged every time.

For a long while, the blobs were lab curiosities. Researchers were focused on other things. Then doctoral student Shalev got involved. She was fascinated by the structures and wanted to understand the reason for the phenomenon. She repeated the experiments in a modified apparatus that gave more control over the conditions to vary them systematically.

Shalev collaborated with physics professor Roy Clarke to gain a better understanding of the crystallization, and mechanical engineering professor Wei Lu to simulate the evolution of the surface. She's first author of a paper on the findings published in the current edition of Nature Communications.

"As far as we know, no other technology can do this," Shalev said.

The organic vapor jet printing process the researchers use is a technique Shtein helped to develop when he was in graduate school. He describes it as spray painting, but with a gas rather than with a liquid. It's cheaper and easier to do for certain applications than competing approaches that involve stencils or can only be done in a vacuum, Shtein says. He's especially hopeful about the prospects for this technique to advance emerging 3D-printed pharmaceutical concepts.

For example, Shtein and Shalev believe this method offers a precise way to control the size and shape of the medicine particles, for easier absorption into the body. It could also allow drugs to be attached directly to other materials and it doesn't require solvents that might introduce impurities.

Explore further: 'Inverse opal' structure improves thin-film solar cells

More information: The study is titled "Growth and modelling of spherical crystalline morphologies of molecular materials." Nature Communications 5, Article number: 5204 DOI: 10.1038/ncomms6204

Related Stories

'Inverse opal' structure improves thin-film solar cells

January 14, 2014

( —Researchers have shown how to increase the efficiency of thin-film solar cells, a technology that could bring low-cost solar energy. The approach uses 3-D "photonic crystals" to absorb more sunlight than conventional ...

Scientists develop pioneering new spray-on solar cells

August 1, 2014

( —A team of scientists at the University of Sheffield are the first to fabricate perovskite solar cells using a spray-painting process – a discovery that could help cut the cost of solar electricity.

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.