Stronger, better solar cells: Graphene research on the cusp of new energy capabilities

Aug 05, 2014
Adrian Hunt. Credit: Mark Ferguson

(Phys.org) —There remains a lot to learn on the frontiers of solar power research, particularly when it comes to new advanced materials which could change how we harness energy.

Under the guidance of Canada Research Chair in Materials Science with Synchrotron Radiation, Dr. Alexander Moewes, University of Saskatchewan researcher Adrian Hunt spent his PhD investigating graphene , a cutting-edge material that he hopes will shape the future of technology.

To understand graphene oxide, it is best to start with pure graphene, which is a single-layer sheet of carbon atoms in a honeycomb lattice that was first made in 2004 by Andre Geim and Kostya Novoselov at the University of Manchester – a discovery that earned the two physicists a Nobel Prize in 2010.

"It is incredibly thin, therefore it is incredibly transparent. It also has extremely high conductivity, it's much better than copper, and it's extremely strong, its tensile strength is even stronger than steel," Hunt said.

"Air doesn't damage it. It can't corrode, it can't degrade. It's really stable."

All of this makes graphene a great candidate for . In particular, its transparency and conductivity mean that it solves two problems of solar cells: first, light needs a good conductor in order to get converted into usable energy; secondly, the cell also has to be transparent for light to get through.

Most solar cells on the market use with a non-conductive glass protective layer to meet their needs.

"Indium is extremely rare, so it is becoming more expensive all the time. It's the factor that will keep solar cells expensive in the future, whereas graphene could be very cheap. Carbon is abundant," said Hunt.

Although graphene is a great conductor, it is not very good at collecting the electrical current produced inside the solar cell, which is why researchers like Hunt are investigating ways to modify graphene to make it more useful.

Graphene oxide, the focus of Hunt's PhD work, has oxygen forced into the carbon lattice, which makes it much less conductive but more transparent and a better charge collector. Whether or not it will solve the solar panel problem is yet to be seen, and researchers in the field are building up their understanding of how the new material works.

Using X-ray scattering techniques at the REIXS and SGM beamlines at the Canadian Light Source, as well as a Beamline 8.0.1 at the Advanced Light Source, Hunt set out to learn more about how oxide groups attached to the graphene lattice changed it, and how in particular they interacted with charge-carrying graphene atoms.

"Graphene oxide is fairly chaotic. You don't get a nice simple structure that you can model really easily, but I wanted to model graphene oxide and understand the interplay of these parts."

Previous models had seemed simplistic to Hunt, and he wanted a model that would reflect graphene oxide's true complexity.

Each different part of the graphene oxide has a unique electronic signature. Using the synchrotron, Hunt could measure where electrons were on the graphene, and how the different oxide groups modified that.

He showed that previous models were incorrect, which he hopes will help improve understanding of the effects of small shifts in oxidization.

Moreover, he studied how graphene oxide decays. Some of the oxide groups are not stable, and can group together to tear the lattice; others can react to make water. If graphene oxide device has water in it, and it is heated up, the water can actually burn the and produce carbon dioxide. It's a pitfall that could be important to understand in the development of long-lasting solar cells, where sun could provide risky heat into the equation.

More research like this will be the key to harnessing graphene for solar power, as Hunt explains.

"There's this complicated chain of interreactions that can happen over time, and each one of those steps needs to be addressed and categorized before we can make real progress."

Explore further: Super-stretchable yarn is made of graphene

More information: Hunt, Adrian, Ernst Z. Kurmaev, and Alex Moewes. "A Re‐evaluation of How Functional Groups Modify the Electronic Structure of Graphene Oxide."Advanced Materials (2014). DOI: 10.1002/adma.201401300

add to favorites email to friend print save as pdf

Related Stories

Super-stretchable yarn is made of graphene

Jun 23, 2014

(Phys.org) —A simple, scalable method of making strong, stretchable graphene oxide fibers that are easily scrolled into yarns and have strengths approaching that of Kevlar is possible, according to Penn ...

Tough foam from tiny sheets

Jul 29, 2014

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Recommended for you

Paper electronics could make health care more accessible

Nov 19, 2014

Flexible electronic sensors based on paper—an inexpensive material—have the potential to some day cut the price of a wide range of medical tools, from helpful robots to diagnostic tests. Scientists have ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.