Peering into giant planets from in and out of this world

Jul 17, 2014
The interior of the target chamber at the National Ignition Facility at Lawrence Livermore National Laboratory. The object entering from the left is the target positioner, on which a millimeter-scale target is mounted. Researchers recently used NIF to study the interior state of giant planets. Credit: Damien Jemison/LLNL

Lawrence Livermore scientists for the first time have experimentally re-created the conditions that exist deep inside giant planets, such as Jupiter, Uranus and many of the planets recently discovered outside our solar system.

Researchers can now re-create and accurately measure that control how these evolve over time, information essential for understanding how these massive objects form. This study focused on carbon, the fourth most abundant element in the cosmos (after hydrogen, helium and oxygen), which has an important role in many types of planets within and outside our . The research appears in the June 17 edition of the journal, Nature.

Using the largest laser in the world, the National Ignition Facility at Lawrence Livermore National Laboratory, teams from the Laboratory, University of California, Berkeley and Princeton University squeezed samples to 50 million times Earth's , which is comparable to the pressures at the center of Jupiter and Saturn. Of the 192 lasers at NIF, the team used 176 with exquisitely shaped energy versus time to produce a pressure wave that compressed the material for a short period of time. The sample – diamond – is vaporized in less than 10 billionths of a second.

Though diamond is the least compressible material known, the researchers were able to compress it to an unprecedented density greater than lead at ambient conditions.

"The experimental techniques developed here provide a new capability to experimentally reproduce pressure–temperature conditions deep in ," said Ray Smith, LLNL physicist and lead author of the paper.

Such pressures have been reached before, but only with shock waves that also create high temperatures – hundreds of thousands of degrees or more – that are not realistic for planetary interiors. The technical challenge was keeping temperatures low enough to be relevant to planets. The problem is similar to moving a plow slowly enough to push sand forward without building it up in height. This was accomplished by carefully tuning the rate at which the laser intensity changes with time.

"This new ability to explore matter at atomic scale pressures, where extrapolations of earlier shock and static data become unreliable, provides new constraints for dense matter theories and planet evolution models," said Rip Collins, another Lawrence Livermore physicist on the team.

The data described in this work are among the first tests for predictions made in the early days of quantum mechanics, more than 80 years ago, which are routinely used to describe matter at the center of planets and stars. While agreement between these new data and theory are good, there are important differences discovered, suggesting potential hidden treasures in the properties of diamond compressed to such extremes. Future experiments on NIF are focused on further unlocking these mysteries.

Explore further: Compressed diamond sheds light on mega-planets

More information: Ramp compression of diamond to five terapascals, Nature, www.nature.com/nature/journal/… ull/nature13526.html

add to favorites email to friend print save as pdf

Related Stories

Compressed diamond sheds light on mega-planets

Jul 16, 2014

Physicists in the United States on Wednesday reported they had compressed diamond to a density greater than that of lead, a technical feat that yields insights into the secrets of giant planets.

Under pressure: Ramp-compression smashes record

Nov 11, 2011

In the first university-based planetary science experiment at the National Ignition Facility (NIF), researchers have gradually compressed a diamond sample to a record pressure of 50 megabars (50 million times ...

Putting the squeeze on planets outside our solar system

Feb 10, 2012

(PhysOrg.com) -- Using high-powered lasers, scientists at Lawrence Livermore National Laboratory and collaborators discovered that molten magnesium silicate undergoes a phase change in the liquid state, abruptly ...

Probing methane's secrets: From diamonds to Neptune

Sep 12, 2013

Hydrocarbons from the Earth make up the oil and gas that heat our homes and fuel our cars. The study of the various phases of molecules formed from carbon and hydrogen under high pressures and temperatures, ...

Recommended for you

Particles, waves and ants

2 hours ago

Animals looking for food or light waves moving through turbid media – astonishing similarities have now been found between completely different phenomena.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.