Molecular mechanisms underlying the prevention of autoimmunity by Roquin revealed

Jul 14, 2014
Molecular mechanisms underlying the prevention of autoimmunity by Roquin revealed

Scientists at the Helmholtz Zentrum München, the Ludwig-Maximilians University of Munich (LMU) and the Technische Universität München (TUM) have moved an important step closer to understanding molecular mechanisms of autoimmune diseases. They solved the three-dimensional structure of the Roquin protein when bound to messenger ribonucleic acid (mRNA) molecules. The results revealed that there is a much wider range of functionally important Roquin binding partners than previously assumed. The novel findings are published in the journal Nature Structural & Molecular Biology.

The Roquin protein, discovered in 2005, controls T-cell activation and differentiation by regulating the expression of certain mRNAs. In doing so, it helps to guarantee immunological tolerance and prevents immune responses against the body's own structures that can lead to autoimmune disease. Roquin is thus an immune regulator.Autoimmune diseases affect between five and ten per cent of the population. They usually occur as a result of complex environmental influences when a genetic predisposition exists. Only in rare cases the development of the disease is determined by a single mutated gene. However, a single mutation in the Roquin gene in a mouse model was shown to be responsible for the development of the autoimmune disease systemic lupus erythematosus. This mutation in the Roquin protein also led to a high susceptibility to type 1 diabetes and rheumatoid arthritis and induced angioimmunoblastic T-cell lymphoma.

Elucidation of the three-dimensional structure of the Roquin-RNA complex

An interdisciplinary team comprising the research groups led by Prof. Michael Sattler, Dr. Dierk Niessing and Prof. Vigo Heissmeyer at the Helmholtz Zentrum München, Ludwig-Maximilian University (LMU) and the Technische Universität München (TUM) has now revealed unprecedented insight into how Roquin recognizes its RNA binding partner and thereby controls T-cell functions. To this end, the scientists Dr. Andreas Schlundt, Gitta Heinz, and Dr. Robert Janowski used the X-ray crystallography platform of the Helmholtz Zentrum München to determine the spatial structure of the RNA binding domain of Roquin when bound to its RNA target. The interaction of Roquin with additional RNA binding partners was studied in solution using nuclear magnetic resonance (NMR) spectroscopy at the Bavarian NMR Center, a joint research infrastructure of the Helmholtz Zentrum München and TUM. Furthermore, the researchers could confirm the biological significance of the molecular recognition of the RNA by studying Roquin-dependent gene regulation in cellular systems.

The results obtained reveal for the first time the molecular interactions with which roquin recognizes a binding motif in a gene's mRNA. "To our surprise, these results indicate that a greater range of binding modes plays an important functional role for the gene regulation in T-cells," says Prof. Michael Sattler. "Thus, our findings suggest that Roquin regulates a larger number of genes than was previously assumed," Dr. Niessing adds. In addition to the mRNAs with optimal recognition motifs, which are tightly bound and predominantly regulated by Roquin, there is a potentially much larger number of mRNAs which are more weakly bound, but nevertheless regulated by Roquin. "On the basis of these findings we will now focus on understanding how Roquin levels are regulated in T-cells, since strong and weakly bound target mRNAs will experience a principally different regulation when the availability of the protein varies" explains Prof. Vigo Heissmeyer.

Basis for developing treatment

Defining the molecular interplay between Roquin and RNA is a prerequisite for con-trolling the function of Roquin and using its role for therapeutic strategies to treat . To this end, the scientists are now planning follow-up studies to find out how the function of Roquin can be manipulated.

Explore further: New diagnostic test to distinguish psoriasis from eczema

More information: Schlundt A. et al. (2014). "Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation," Nature Structural & Molecular Biology (2014) DOI: 10.1038/nsmb.2855. Received 14 April 2014 Accepted 03 June 2014 Published online 13 July 2014

add to favorites email to friend print save as pdf

Related Stories

New diagnostic test to distinguish psoriasis from eczema

Jul 10, 2014

In some patients, the chronic inflammatory skin diseases psoriasis and eczema are similar in appearance. Up to now, dermatologists have therefore had to base their decision on which treatment should be selected on their own ...

New associations between genes and metabolic markers

Nov 07, 2013

In two comprehensive studies, scientists from the Helmholtz Zentrum München (HMGU), Ludwig-Maximilians-Universität München (LMU) and Technische Universität München (TUM) have discovered new associations ...

Munich researchers discover key allergy gene

Aug 22, 2008

Together with colleagues from the Department of Dermatology and Allergy and the Center for Allergy and Environment of the Technische Universität München, scientists at the Helmholtz Zentrum München have pinpointed a major ...

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.