New material puts a twist in light

Jul 18, 2014
David Powell twisting light. Credit: ANU

Scientists at The Australian National University (ANU) have uncovered the secret to twisting light at will. It is the latest step in the development of photonics, the faster, more compact and less carbon-hungry successor to electronics.

A random find in the washing basket led the team to create the latest in a new breed of materials known as metamaterials. These artificial materials show extraordinary properties quite unlike .

The work is published in Nature Communications.

"Our material can put a twist into light – that is, rotate its polarisation – orders of magnitude more strongly than natural materials," said lead author Mingkai Liu, a PhD student at the ANU Research School of Physics and Engineering (RSPE).

"And we can switch the effect on and off directly with light," said Mr Liu .

Electronics is estimated to account for two per cent of the global carbon footprint, a figure which photonics has the potential to reduce significantly. Already light carried by fibre optics, has replaced electricity for carrying signals over long distances. The next step is to develop photonic analogues of electronic computer chips, by actively controlling the properties of light, such as its polarisation.

The ability of a material to rotate polarisation, as in this experiment, springs from the asymmetry of a molecule. It occurs in natural minerals and substances; for example, sugar is asymmetric and so rotation can be used to measure sugar concentrations, which is useful in diabetes research.

However the remarkable properties of this artificial material might first be put to use in the budding photonics industry, suggests co-author Dr David Powell, also from RSPE.

"It's another completely new tool in the toolbox for processing light," he says. "Thin slices of these can replace bulky collections of lenses and mirrors. This miniaturisation could lead to the creation of more compact opto-electronic devices, such as a light-based version of the electronic transistor."

The metamaterials are formed from a pattern of tiny metal shapes, dubbed meta-atoms. To obtain optical rotation Mr Liu and his colleagues used pairs of C-shaped meta-atoms, one suspended above the other by a fine wire. When light is shined on to the pair of meta-atoms the top one rotates, making the system asymmetric.

"The high responsiveness of the system comes because it is very easy to make something hanging rotate," says Mr Liu.

"The idea came to me when I found a piece of wire in my washing one day."

The fact that the team's meta-atoms move when light shines on them adds a new dimension, he says.

"Because light affects the symmetry of our system, you can tune your material's response simply by shining a beam on it. Tunability of a metamaterial is an important step towards building devices based on these ," he says.

Explore further: Twisting the light away using ultrasmall holes

add to favorites email to friend print save as pdf

Related Stories

Twisting the light away using ultrasmall holes

Jun 20, 2014

A new study shows that light transmitted through apertures smaller than the wavelength of light go through a radical change, splitting into two symmetrical counter-rotating polarisations.

Harvesting energy from devices

Jul 04, 2014

If there's one thing nearly all modern technology has in common, it's heat. Whether it's your car, computer, television, or even refrigerator, they all generate large amounts of heat. And nearly all of it ...

Flexible, semi-transparent ultrathin solar cells

Mar 09, 2014

A lot of research has been done on graphene recently—carbon flakes, consisting of only one layer of atoms. As it turns out, there are other materials too which exhibit remarkable properties if they are ...

Recommended for you

Cold Atom Laboratory creates atomic dance

13 hours ago

Like dancers in a chorus line, atoms' movements become synchronized when lowered to extremely cold temperatures. To study this bizarre phenomenon, called a Bose-Einstein condensate, researchers need to cool ...

Wild molecular interactions in a new hydrogen mixture

19 hours ago

Hydrogen—the most abundant element in the cosmos—responds to extremes of pressure and temperature differently. Under ambient conditions hydrogen is a gaseous two-atom molecule. As confinement pressure ...

Scientists create possible precursor to life

20 hours ago

How did life originate? And can scientists create life? These questions not only occupy the minds of scientists interested in the origin of life, but also researchers working with technology of the future. ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

swordsman
not rated yet Jul 19, 2014
A new optical engine. Somewhat similar to an electrical motor.
jonathanL
5 / 5 (1) Jul 20, 2014
For reference: Mingkai Liu, David A. Powell, Ilya V. Shadrivov, Mikhail Lapine & Yuri S. Kivshar, "Spontaneous chiral symmetry breaking in metamaterials" NATURE COMMUNICATIONS 5, 4441
http://www.nature...441.html
373659436
5 / 5 (1) Jul 20, 2014
A new optical engine. Somewhat similar to an electrical motor.


Actually I think optical engine is not the main point of their paper. The interesting thing is about the symmetry breaking stuff.
lkc562
1 / 5 (1) Jul 20, 2014
Hello.
crys211
5 / 5 (1) Jul 21, 2014
Guess would be pretty challenging to get to optical regime, and other things like heat fluctuation, might ruin the effect. But still cool, good to see something different in metamaterials study ~~