Twisting the light away using ultrasmall holes

June 20, 2014, Macquarie University

A new study shows that light transmitted through apertures smaller than the wavelength of light go through a radical change, splitting into two symmetrical counter-rotating polarisations.

Researchers from Macquarie University, in collaboration with the Australian National University in Canberra, shone a focused red laser through a thin gold mirror perforated with round holes ranging in size from 50 to 600 nanometres. Although most of the light was reflected, a small fraction of the light passed through the hole with altered polarisation properties.

"A circularly polarized light beam has rotating electric and magnetic fields. In our experiments, we observed that after the nanohole, part of the light had a polarisation rotating in the opposite direction," said lead researcher Associate Professor Gabriel Molina-Terriza, from the Centre of Excellence for Engineered Quantum Systems (EQuS), which funded the research.

"It was a puzzling observation. All the elements that the light was traversing, including the aperture, were perfectly round, so we couldn't figure out what was causing the change of the polarisation of the light. We realised the cause for this counterintuitive phenomenon was that a hidden symmetry of the electromagnetic fields was broken in our experiment: the electromagnetic duality."

The researchers observed that the flips in the rotation were relatively stronger for small holes compared to the larger ones. The changes in helicity reveal how the nanoholes were reacting differently to the electric and magnetic fields.

The helicity of any quantum particle, including the quantum particles composing light (photons), is defined as the projection of the angular momentum on the direction of the linear momentum. In the case of electromagnetic fields, this relates to the circular polarisations of the . Therefore, a light field changing circular polarisation in the interaction with a particle shows that the duality symmetry is broken.

The of light is now used in numerous applications including 3D displays and sunglasses, but also to characterise materials. Breakthroughs in nanophotonics such as this allow greater manipulation of photons at the nanoscale, and will assist in the development of new biosensors and the improvement of solar cell efficiencies.

Further studies will facilitate the use of fields to quantum control the electronic properties of very small metallic particles, and to design ultrasensitive sensors.

The full research paper "Experimental control of optical helicity in nanophotonics" has been published in the journal Light: Science & Applications (LSA), from the Nature Publishing Group (NPG).

Explore further: Extraordinary momentum and spin discovered in evanescent light waves

More information: The full research paper, "Experimental control of optical helicity in nanophotonics," is available online: www.nature.com/lsa/journal/v3/ … 6/pdf/lsa201464a.pdf

Related Stories

Scientists spin photons to send light in one direction

April 19, 2013

(Phys.org) —Researchers at King's College London have achieved previously unseen levels of control over the travelling direction of electromagnetic waves in waveguides. Their ground-breaking results could have far-reaching ...

A new twist in the properties of light

April 25, 2014

Light has some well-established dynamical properties that have defined our understanding of electromagnetic radiation for over a century. Two of the most fundamental of these properties are that photons of light carry momentum ...

Researchers image the Milky Way's magnetic fingerprint

May 6, 2014

(Phys.org) —Our Galaxy's magnetic field is revealed in a new image from ESA's Planck satellite. This image was compiled from the first all-sky observations of 'polarised' light emitted by interstellar dust in the Milky ...

Team first to detect exciton in metal

June 1, 2014

University of Pittsburgh researchers have become the first to detect a fundamental particle of light-matter interaction in metals, the exciton. The team will publish its work online June 1 in Nature Physics.

Light particles illuminate the vacuum

February 26, 2013

Researchers from the Finnish Aalto University and the Technical Research Centre of Finland succeeded in showing experimentally that vacuum has properties not previously observed. According to the laws of quantum mechanics, ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

Urban heat island effects depend on a city's layout

February 22, 2018

The arrangement of a city's streets and buildings plays a crucial role in the local urban heat island effect, which causes cities to be hotter than their surroundings, researchers have found. The new finding could provide ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.