How universal is (lepton) universality?

June 4, 2014
The LHCb detector in its underground cavern at CERN. Credit: CERN

Just as a picture can be worth a thousand words, so the rarest processes at the Large Hadron Collider (LHC) can sometimes have the most to tell us. By isolating and counting decays of B+ mesons to a kaon and two leptons, the LHCb experiment has tested a key assumption of the Standard Model – lepton universality, the idea that electrons, muons and tau leptons should behave in the same way, and be produced equally often in weak decays. In a presentation given at this week's Large Hadron Collider Physics conference, LHCb results reveal the first hints of a difference.

According to the Standard Model, a B+ meson should decay to a kaon, electron and positron as often as it decays to a kaon, muon and antimuon. If a measurement of both rates shows a difference between them, it could be the first sign of something new. Rare B meson decays provide a particularly good laboratory for testing universality, as the decays proceed in a way that allows new, otherwise unseen, particles to influence the rate seen experimentally. Additional Higgs bosons, or a new, heavy version of the Z boson, could alter the relative rate of electron and muon production and be detected in this way.

If the ratio of the number of decays containing muons, to those containing electrons, is measured instead of the individual rates, many theoretical uncertainties cancel to allow a precise probe of universality. The Belle and Babar experiments have previously measured this ratio, with limited precision, and found it consistent with the Standard Model. With its precise silicon tracker and particle identification systems, and access to large datasets, LHCb is well placed to explore the B+ meson system further.

Credit: CERN

LHCb has now analysed their entire dataset of proton-proton collisions from the LHC and finds that B+ mesons decay to muons about 25% less often than they decay to electrons. As these decays only occur a couple of times in every 10 million B+ decays the measurement is still dominated by statistical error, even if it is the world's most precise determination. The observed difference has a significance of 2.6 standard deviations, corresponding to a chance of one in a hundred that it is due to a statistical fluctuation. More data from the forthcoming high energy LHC run is needed to confirm if this tantalising result is indeed the first sign of something new in the universe.

Explore further: LHCb experiment squeezes the space for expected new physics

Related Stories

LHCb experiment squeezes the space for expected new physics

March 6, 2012

( -- Results presented by the LHCb collaboration this evening at the annual ‘Rencontres de Moriond’ conference, held this year in La Thuile, Italy, have put one of the most stringent limits to date on ...

Tracking new physics—horse or zebra?

August 12, 2013

If you hear hoof beats, common sense says the cause is more than likely a horse. Yet, the possibility still exists that you're actually hearing a zebra. Physicists at LHCb are applying that same logic to an unusual finding ...

ATLAS sees Higgs boson decay to fermions

November 28, 2013

The ATLAS experiment at CERN has released preliminary results that show evidence that the Higgs boson decays to two tau particles. Taus belong to a group of subatomic particles called the fermions, which make up matter. ...

Recommended for you

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.