Triazine-based, graphitic carbon nitride as novel two-dimensional semiconductor

Jun 05, 2014
Triazine-based, graphitic carbon nitride as novel two-dimensional semiconductor

(Phys.org) —Graphene has been considered a hot candidate for a new generation of silicon-free electronics since the discovery of this two-dimensional form of carbon. However, graphene is not a semiconductor. In the journal Angewandte Chemie, an international team of researchers has now introduced a carbon nitride, a structural analogue of graphene made of carbon and nitrogen that appears to exhibit semiconducting properties.

With a planar, hexagonal, honeycomb structure and freely moving electrons, graphene is, in principle, nothing more than a single-atom layer of graphite. From an electronic point of view, it is a very interesting substance – but it is missing the typical electronic that would make it a semiconductor. This band gap is the difference in energy between the valence band and the conduction band of the electrons. To be effective, this gap must not be too large, so that it allows electrons to easily move from the to the when excited. Various methods have previously been used to provide graphene with such a band gap. An alternative idea is to make a "graphitic ", a material made of carbon and nitrogen, which ought to have properties very similar to graphene. A team of researchers from the University of Liverpool (UK), the University of Ulm (Germany), the Humboldt University in Berlin (Germany), the Aalto University (Finland), University College London (UK), and the Max Planck Institute of Colloids and Interfaces in Potsdam (Germany) has now been able to make such a material for the first time.

Transmission electron microscopy and scanning force microscopy, as well as X-ray crystallographic examinations proved that the thin crystalline films are a triazine-based, graphitic carbon nitride (TGCN). Triazines are six-membered rings containing three carbon and three nitrogen atoms. The new material consists of such triazine rings, with additional nitrogen atoms connecting the rings into groups of three to make a two-dimensional layer. The team led by Andrew I. Cooper and Michael J. Bojdys believes that these layers are not fully planar, but are instead slightly wavy.

TGCN thus has a structure similar to that of graphite, however—as hoped—it is a . The films produced consisted of between three and several hundred layers of atoms with a direct band gap between 1.6 and 2.0 eV. During the production process, the layers of TGCN are preferentially deposited onto substrates. The crystallization of TGCN on the surface of insulating quartz offers potential for practically relevant applications. This may be a step on the way to the post-silicon era of electronics.

Explore further: New graphene-type material created

More information: Algara-Siller, G., Severin, N., Chong, S. Y., Björkman, T., Palgrave, R. G., Laybourn, A., Antonietti, M., Khimyak, Y. Z., Krasheninnikov, A. V., Rabe, J. P., Kaiser, U., Cooper, A. I., Thomas, A. and Bojdys, M. J. (2014), "Triazine-Based, Graphitic Carbon Nitride: a Two-Dimensional Semiconductor." Angew. Chem. Int. Ed.. doi: 10.1002/anie.201402191

add to favorites email to friend print save as pdf

Related Stories

New graphene-type material created

May 22, 2014

(Phys.org) —Scientists at the University of Liverpool have created a new material, related to graphene, which has the potential to improve transistors used in electronic devices.

Study opens graphene band-gap

Dec 18, 2013

Ulsan National Institute of Science and Technology (UNIST) announced a method for the mass production of boron/nitrogen co-doped graphene nanoplatelets, which led to the fabrication of a graphene-based field ...

Graphene's multi-colored butterflies

Jun 01, 2014

Combining black and white graphene can change the electronic properties of the one-atom thick materials, University of Manchester researchers have found.

Two graphene layers may be better than one

Apr 27, 2011

(PhysOrg.com) -- Researchers at the National Institute of Standards and Technology have shown that the electronic properties of two layers of graphene vary on the nanometer scale. The surprising new results ...

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

Feb 26, 2015

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Magnetic nanoparticles enhance performance of solar cells

Feb 25, 2015

Magnetic nanoparticles can increase the performance of solar cells made from polymers - provided the mix is right. This is the result of an X-ray study at DESY's synchrotron radiation source PETRA III. Adding ...

Researchers enable solar cells to use more sunlight

Feb 25, 2015

Scientists of the University of Luxembourg and of the Japanese electronics company TDK report progress in photovoltaic research: they have improved a component that will enable solar cells to use more energy of the sun and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.