Satellite view of volcanoes finds the link between ground deformation and eruption

May 12, 2014
Satellite view of volcanoes finds the link between ground deformation and eruption
http://blog.smu.edu/research/files/2014/04/10501_satellite_volcano-300x218.jpg

(Phys.org) —Using satellite imagery to monitor which volcanoes are deforming provides statistical evidence of their eruption potential, according to a new study in Nature Communications.

The European Space Agency's Sentinel satellite, launched April 3, should allow scientists to test this link in greater detail and eventually develop a forecast system for all volcanoes, including those that are remote and inaccessible.

Volcano deformation and, in particular, uplift are often considered to be caused by magma moving or pressurizing underground. Magma rising towards the surface could be a sign of an imminent eruption. On the other hand, many other factors influence volcano deformation and, even if magma is rising, it may stop short, rather than erupting.

Satellite interferometric , called InSAR for short, is a spaceborne imaging technology that will help scientists understand how volcanoes work, according to study co-author and geophysicist Zhong Lu, Southern Methodist University in Dallas.

"InSAR will aid in the prediction of future eruptions," said Lu, a professor and Shuler-Foscue Chair of geophysics in SMU's Roy M. Huffington Department of Earth Sciences. "At SMU, we are developing and applying this technique to track motions of volcanic activities, landslide movements, land subsidence and building stability, among other events."

Juliet Biggs, the University of Bristol in England, led the study. Biggs looked at the archive of covering more than 500 volcanoes worldwide, many of which have been systematically observed for more than 18 years.

Satellite radar can provide high-resolution maps of deformation, allowing the detection of unrest at many volcanoes that might otherwise go unrecognized. Such satellite data is often the only source of information for remote or inaccessible volcanoes.

The researchers, who included scientists from Cornell University and Oxford University also, applied statistical methods more traditionally used for medical diagnostic testing and found that many deforming volcanoes also erupted (46 percent). Together with the very high proportion of non-deforming volcanoes that did not erupt (94 percent), these jointly represent a strong indicator of a volcano's long-term eruptive potential.

"The findings suggest that is the perfect tool to identify volcanic unrest on a regional or global scale and target ground-based monitoring," Biggs said.

New technology may improve forecasting of volcanic eruptions

The work was co-funded by the U.K. Centre for Observation and Modelling of Earthquakes, Volcanoes and Tectonics and STREVA, a research consortium aimed at finding ways to reduce the negative consequences of volcanic activity on people and their assets.

"Improving how we anticipate activity using new technology such as this is an important first step in doing better at forecasting and preparing for ," said STREVA Principal Investigator Jenni Barclay.

Global studies of volcano deformation using satellite data will increasingly play a part in assessing eruption potential at more and more volcanoes, said researcher Willy Aspinall, University of Bristol, especially in regions with short historical records or limited conventional monitoring.

However, many factors and processes, some observable, but others not, influence deformation to a greater or lesser extent. These include the type of rock that forms the volcano, its tectonic characteristics and the supply rate and storage depth of magma beneath it. Thus deformation can have different implications for different types of volcanoes.

For volcanoes with short eruption cycles the satellite record typically spans episodes that include both deformation and eruption, resulting in a high correlation between the two. For volcanoes with long eruption cycles the satellite record tends to capture either deformation or eruption but rarely both.

Seismological data indicate unrest before eruption may only be a few days

In the past, radar images of the majority of the world's volcanoes were only acquired a few times a year, but seismological data indicate that the duration of unrest before an eruption might be as short as only a few days.

"This study demonstrates what can be achieved with global satellite coverage even with limited acquisitions," Biggs said, "so we are looking forward to the step-change in data quantity planned for the next generation of satellites."

The European Space Agency launched its latest radar mission, Sentinel-1, in early April. The mission is designed for global monitoring and will collect images every six to twelve days. Using this, scientists should be able to test the causal and temporal relationship with deformation on much shorter timescales.

"This study is particularly exciting because Sentinel-1 will soon give us systematic observations of the ups and downs of every on the planet," said Tim Wright, director of the U.K. Centre for Observation and Modelling of Earthquakes. "For many places, particularly in developing countries, these data could provide the only warning of an impending ."

Explore further: A satellite view of volcanoes finds the link between ground deformation and eruption

More information: "Global link between deformation and volcanic eruption quantified by satellite imagery". J. Biggs, et al. Nature Communications 5, Article number: 3471 DOI: 10.1038/ncomms4471. Received 01 August 2013 Accepted 19 February 2014 Published 03 April 2014

add to favorites email to friend print save as pdf

Related Stories

Taking the 'pulse' of volcanoes using satellite images

Nov 05, 2012

A new study by scientists at the University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science uses Interferometric Synthetic Aperture Radar (InSAR) data to investigate deformation prior to the eruption of active ...

NASA image: Volcanoes in Guatemala

Apr 24, 2014

This photo of volcanoes in Guatemala was taken from NASA's C-20A aircraft during a four-week Earth science radar imaging mission deployment over Central and South America. The conical volcano in the center ...

New insight may help predict volcanic eruption behavior

May 04, 2014

A new discovery in the study of how lava dome volcanoes erupt, published today in Nature Geoscience, may help in the development of methods to predict how a volcanic eruption will behave, say scientists at the ...

Keeping an eye on volcanoes, from the sky

Mar 29, 2012

The importance of global and frequent data coverage of volcanoes was highlighted in a recent article published in Science. Satellites are finding that volcanoes previously thought to be dormant are showin ...

Recommended for you

Sculpting tropical peaks

33 minutes ago

Tropical mountain ranges erode quickly, as heavy year-round rains feed raging rivers and trigger huge, fast-moving landslides. Rapid erosion produces rugged terrain, with steep rivers running through deep ...

Volcano expert comments on Japan eruption

1 hour ago

Loÿc Vanderkluysen, PhD, who recently joined Drexel as an assistant professor in Department of Biodiversity, Earth and Environmental Science in the College of Arts and Sciences, returned Friday from fieldwork ...

NASA's HS3 looks Hurricane Edouard in the eye

14 hours ago

NASA and NOAA scientists participating in NASA's Hurricane and Severe Storms Sentinel (HS3) mission used their expert skills, combined with a bit of serendipity on Sept. 17, 2014, to guide the remotely piloted ...

Tropical Storm Rachel dwarfed by developing system 90E

18 hours ago

Tropical Storm Rachel is spinning down west of Mexico's Baja California, and another tropical low pressure area developing off the coast of southwestern Mexico dwarfs the tropical storm. NOAA's GOES-West ...

User comments : 0