Cloud formation and rainfall affected by pollutant oxidation of biodiesel emissions

May 29, 2014

A study into how organic molecules in the atmosphere affect cloud formation has found that a main component of biodiesel, methyl oleate, reacts with ozone surprisingly fast. This process may counterbalance the growth of water droplets resulting from emissions, which would in turn inhibit cloud formation and therefore affect the water cycle in a highly complex way.

The research, published in the journal Physical Chemistry Chemical Physics, was performed by an international team of scientists working at the ILL (Institut Laue-Langevin) in Grenoble, France. Methyl oleate is an organic material that is being produced in larger amounts today due to the increasingly popular FAME (Fatty Acid Methyl Ester) biodiesels. The widespread use of these materials potentially raises their concentration in the atmosphere. They accumulate naturally on the of water, and therefore can lower the of . Such surfactants are important in as the reduced surface tension allows droplets to grow larger, producing clouds and rainfall. Without any surfactants at all these droplets could only grow large enough to form clouds higher up in the atmosphere.

The team performed experiments on the powerful FIGARO instrument at the ILL where intense beams of neutrons were skimmed off single layers of oleate molecules floating on water as they were exposed to gas phase ozone. Measurements of the intensity of reflected neutrons during the reaction allowed the scientists to determine how the concentration of the molecules on the surface changed over time and therefore how susceptible this organic material was to oxidative attack.

The research used neutrons to address two important questions - how quickly the oxidised methyl oleate was lost from the air-water interface and if the products of methyl oleate remained on the surface of the droplet, entered the water or evaporated into the air.

The study found that the methyl oleate degraded ten times quicker than oleic acid, a molecule found in the atmosphere generated from cooking meat. It also showed that the initial surfactant layer at the air-water interface was efficiently eradicated from the surface when exposed to ozone. The mechanism was attributed to the reaction of ozone with a carbon-carbon double bond in methyl oleate, breaking its backbone and thus shearing the molecule in half. This oxidation reaction causes the methyl oleate almost to lose completely its surfactant properties. In the atmosphere this would result in water droplets growing more slowly.

"Neutrons showed that that the surfactant disappears from the air-water interface surprisingly quickly" said Reading University's Dr Christian Pfrang, the lead author of the paper. "The surfactant isn't stable at the surface in the presence of ozone which means surface tension is increased and droplet growth could be slowed down, making it more difficult to form clouds. Furthermore the products aren't stable at all at the droplet surface and this would not have been predicted from the results of previous studies."

Richard Campbell, instrument leader, said "The ILL is the world leading neutron facility for kinetic studies due to its very stable and intense reactor source, and FIGARO is the optimum neutron reflectometer in the world where this research can be performed due to its very high intensity for surface excess studies. We were able to take scans every one to five seconds - necessary for the timescales we were working with - whereas instruments at other facilities would generally require much longer. This capability allowed us to reveal the reaction mechanisms of an oxidation decay of an organic monolayer with greater time resolution and sensitivity than ever before."

The next step in the research is to examine the behaviour of different surfactants and their mixtures when exposed to ozone and other oxidants found in the atmosphere. "We're combining neutron reflectometry with computational modelling" said Federica Sebastiani, an ILL PhD student who worked on FIGARO. "We have models to examine more complex systems with multiple surfactants and we're going to look at these systems in greater detail than ever before."

Explore further: Unexpected water explains surface chemistry of nanocrystals

More information: Paper:!divAbstract

Related Stories

Recommended for you

The Albian Gap, salt rock, and a heated debate

1 hour ago

Salt rock behaves as a fluid and can play a pivotal role in the large-scale, long-term collapse of the world's continental margins. However, the precise way in which this occurs is laced in controversy; nowhere ...

Satellites catch the birth of two volcanic islands

12 hours ago

The birth of a volcanic island is a potent and beautiful reminder of our dynamic planet's ability to make new land. Given the destruction we've seen following natural events like earthquakes and tsunamis in t ...

Uncovering diversity in an invisible ocean world

13 hours ago

Plankton are vital to life on Earth—they absorb carbon dioxide, generate nearly half of the oxygen we breathe, break down waste, and are a cornerstone of the marine food chain. Now, new research indicates ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.