Broadening the scope for synthesising optically active compounds

May 08, 2014

Chiral compounds are increasingly important in chemical manufacturing. They are distinguished by a special kind of asymmetry in their molecular structure. Yutaka Ukaji and colleagues at Kanazawa University have now developed a method for desymmetrising compounds to produce new chiral molecules. The process allows 99% selectivity in the chemicals produced.

The property of chirality is defined by the existence of distinct mirror image geometric arrangements of the constituent parts of a molecule, known as stereoisomers. Just as your right hand cannot be directly superimposed on the left, if the molecule is chiral the cannot be directly superimposed. Chiral are often described as optically active as one stereoisomer will rotate the plane of incident polarised light to the left and the other will rotate it to the right.

Desymmetrisation methods to produce chiral compounds exist but the range of compounds amenable to the approach remains limited. Ukaji and his focused on a type of organic compound known as divinyl carbinols – where the vinyl group describes an ethylene molecular group and the carbinol describes an alcohol derived from methanol. Desymmetrisation of divinyl carbinols can provide new optically active alcohol derivatives that contain useful functional groups for further chemical transformations.

The approach developed by the Kanazawa team built on previous work demonstrating an asymmetric 'cycloaddition' reaction where compounds with unsaturated (double, triple etc) bonds combine forming a ring. Their current work demonstrates the reaction on divinyl carbinols with selective production of one mirror image product over the other of over 99%.

They conclude in their report on the work, "This method would be useful for the preparation of optically active nitrogen- and oxygen containing chemicals."

In the meantime, measuring ISG expression patterns in blood and liver samples could provide a useful way of predicting a patient's response to interferon / ribavirin therapy.

Explore further: Chiral breathing: Electrically controlled polymer changes its optical properties

More information: Yoshida M, Sassa N, Kato T, Fujinami S, Soeta T, Inomata K, Ukaji Y. "Desymmetrization of 1,4-pentadien-3-ol by the asymmetric 1,3-dipolar cycloaddition of azomethine imines." Chemistry. 2014 Feb 10;20(7):2058-64. DOI: 10.1002/chem.201302889. Epub 2014 Jan 8.

add to favorites email to friend print save as pdf

Related Stories

Unique method creates correct mirror image of molecule

May 22, 2013

Many molecules have a right and a left form, just like shoes. In pharmaceuticals, it is important that the correct form of the molecule is used. Researchers at the University of Gothenburg, Sweden, have been ...

Predicting hepatitis C treatment success

May 08, 2014

Levels of interferon-stimulated genes in the liver and blood could help predict if a patient with hepatitis C will respond to conventional therapy, researchers at Kanazawa University suggest.

Recommended for you

Towards controlled dislocations

Oct 20, 2014

Crystallographic defects or irregularities (known as dislocations) are often found within crystalline materials. Two main types of dislocation exist: edge and screw type. However, dislocations found in real ...

Chemists tackle battery overcharge problem

Oct 17, 2014

Research from the University of Kentucky Department of Chemistry will help batteries resist overcharging, improving the safety of electronics from cell phones to airplanes.

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

User comments : 0