Penicillin redux: Rearming proven warriors for the 21st century

April 14, 2014 by Steven Powell
Conjugates of a beta-lactam antibiotic with the team's metallopolymer had enhanced antimicrobial properties compared with the antibiotic alone. The effect was particularly striking with hospital-associated MRSA (left). Credit: Journal of the American Chemical Society

Penicillin, one of the scientific marvels of the 20th century, is currently losing a lot of battles it once won against bacterial infections. But scientists at the University of South Carolina have just reported a new approach to restoring its combat effectiveness, even against so-called "superbugs."

Bacteria have been chipping away at the power of the penicillin family of drugs since their first wide-scale use as in the 1940s. For example, the staph infection, brought about by the bacterium Staphylococcus aureus, was once readily treated with penicillin and its molecular cousins.

But that bug has changed. In the 1960s, a new strain arrived, termed MRSA for methicillin- (or sometimes multidrug-) resistant S. aureus. It has become a serious problem because the earliest deployed antibiotics are often useless against the new strain, and its prevalence has only increased since it was first observed. MRSA (pronounced mer-suh) is sometimes called a superbug because of the difficulty physicians have in treating infected patients.

The S. aureus microbe has evolved the MRSA strain by developing a variety of defenses against antibiotics to which they've been exposed. One of those defenses effectively neutralizes penicillin's greatest strength.

That strength is its molecular core, a cyclic four-membered amide ring termed a beta-lactam. It is a common structural element of the penicillins, their synthetic and semi-synthetic derivatives, and other related molecules that constitute the broad family of drugs called the beta-lactam antibiotics. Just a few examples (of dozens) include amoxicillin, ampicillin and cefazolin.

The beta-lactam structure in a molecule is something that many bacteria don't like at all. It greatly hinders their ability to reproduce by cell division, and so chemists have for years spent time making molecules that all contain the beta-lactam structural motif, but differ in the surrounding molecular "shrubbery." Physicians heavily use the many versions of beta-lactam antibiotics to fight bacterial infections, and many have been retired because they're no longer effective against the defenses bacteria have evolved in response.

One of the most effective bacterial defenses is an enzyme called beta-lactamase, which chews up the beta-lactam structure. Some bacteria, such as MRSA, have developed the ability to biosynthesize and release beta-lactamase when needed. It's a devastating defense because it's so general, targeting the common structural motif in all of the many beta-lactam antibiotics.

But that also creates the opportunity for a general approach to solving the problem, which is what Carolina's Chuanbing Tang and colleagues just reported in the Journal of the American Chemical Society.

"Instead of developing , here we ask the question, 'can we recycle the old antibiotics?' " he said. "With traditional antibiotics like G, amoxicillin, ampicillin and so on, can we give them new life?"

The approach pairs the drug with a protective polymer developed in Tang's chemistry laboratory. In lab tests, graduate student Jiuyang Zhang prepared a cobaltocenium metallopolymer that greatly slowed the destructiveness of beta-lactamase on a model beta-lactam molecule (nitrocefin).

The interdisciplinary team, which included Mitzi Nagarkatti and Alan Decho, from the university's School of Medicine and Arnold School of Public Health, respectively, also showed that the antimicrobial effectiveness of the four beta-lactams studied in detail was enhanced by the polymer. The enhancement was modest against two strains, but very pronounced with the hospital-associated strain of MRSA (HA-MRSA).

The metallopolymer by itself even demonstrated antimicrobial properties, lysing bacterial cells while leaving human red blood cells unaffected. By a variety of measures, the polymer was found to be nontoxic to human cells in laboratory tests.

The project is still far from clinical use, but Tang knows moving forward is imperative.

"In the United States every year, around 100,000 patients die of bacteria-induced infections," Tang said. "And the problem is increasing because bacteria are building resistance.

"It's a really, really big problem, not only for individual patients, but also for society."

Explore further: Decoding the proteins behind drug-resistant superbugs

More information: Paper:

Related Stories

Decoding the proteins behind drug-resistant superbugs

September 16, 2011

Penicillin and its descendants once ruled supreme over bacteria. Then the bugs got stronger, and hospitals have reported bacterial infections so virulent that even powerful antibiotics held in reserve for these cases don't ...

Researchers uncover keys to antibiotic resistance in MRSA

October 4, 2013

( —University of Notre Dame researchers Shahriar Mobashery and Mayland Chang and their collaborators in Spain have published research results this week that show how methicillin-resistant Staphylococcus aureus ...

Chemists discover new class of antibiotics

March 7, 2014

( —A team of University of Notre Dame researchers led by Mayland Chang and Shahriar Mobashery have discovered a new class of antibiotics to fight bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) ...

Recommended for you

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...

How a molecular motor untangles protein

October 1, 2015

A marvelous molecular motor that untangles protein in bacteria may sound interesting, yet perhaps not so important. Until you consider the hallmarks of several neurodegenerative diseases—Huntington's disease has tangled ...

Anti-aging treatment for smart windows

October 1, 2015

Electrochromic windows, so-called 'smart windows', share a well-known problem with rechargeable batteries – their limited lifespan. Researchers at Uppsala University have now worked out an entirely new way to rejuvenate ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 14, 2014
Hopefully, a cocktail of beta-lactamase inhibitors will have a synergic effect...
not rated yet Apr 15, 2014
How can you work on these things and not believe your foe to be intelligent. I know, I know but there are several things I know for certain aren't true that I can't help believing anyway so I just humor my believer.
not rated yet Apr 15, 2014
Should this technique be found effective, I'd bet just as with existing antibiotics, a major use will be with livestock, so we can raise livestock in ever more filthy conditions.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.