Micro-macro entangled 'cat states' could one day test quantum gravity

Apr 16, 2014 by Lisa Zyga feature
Proposed setup for generating optomechanical “cat states,” a form of micro-macro entanglement in which the quantum states of photons and phonons are in superposition. Credit: R. Ghobadi, et al. ©2014 American Physical Society

(Phys.org) —In Schrödinger's famous thought experiment, a cat's quantum state becomes entangled with the quantum state of a decaying nucleus, resulting in the odd situation that the cat is both alive and dead at the same time. The thought experiment was originally intended to convey the absurdity of applying quantum mechanics to macroscopic objects, but recently physicists have been questioning whether "quantum" effects such as entanglement and superposition may apply on all scales.

In order to extend to the , physicists are working on creating between a macroscopic and microscopic system. This situation is very similar to that of the entanglement between the of the macroscopic cat and that of the microscopic decaying nucleus. So far, micro-macro entanglement has been experimentally demonstrated in optical systems, and is currently being pursued in other areas, such as electro-mechanical and opto-mechanical systems.

In a new study published in Physical Review Letters, physicists Roohollah Ghobadi, et al., have proposed a method for generating optomechanical micro-macro entanglement.

One of the most intriguing outcomes of bringing quantum effects to the macroscopic level using this approach is that it could allow researchers to test for wave function collapse due to quantum gravity, which is predicted to occur on a much shorter timescale than wave function collapse due to environmentally induced decoherence.

"Our proposal allows for observation of the genuine macroscopic superposition of massive objects," Ghobadi told Phys.org. "It also looks promising to test some collapse models."

The proposed method involves storing one component of an of light (consisting of just one or a few photons) in a mechanical resonator (consisting of billions of atoms). During this process, the initial microscopic entangled state of photons is amplified with a strong coherent beam, the photons are converted into phonons, and then the entangled states are retrieved.

This approach makes it possible to create optomechanical "cat states," in which the quantum states of the photons and phonons are in superposition.

The researchers write that the scheme is realizable with current technology, and if realized, would be the second demonstration ever of optomechanical entanglement.

To test proposals for quantum gravity-induced collapse, future experiments could be performed that compare the collapse time (estimated to be on the order of microseconds) to the collapse time of environmentally induced decoherence (on the order of milliseconds).

"It is interesting to do the proposed experiment for different masses in order to distinguish the decoherence due to a collapse model from conventional environmentally induced decoherence," said coauthor Christoph Simon, Physics Professor at the University of Calgary.

In addition, by varying other factors such as the amplification and the number of phonons, researchers could use this method to look for other types of deviations from quantum physics in this little-explored regime of micro-macro entanglement and superposition.

"One possible direction is to apply the method proposed here to create cat states in other systems," Ghobadi said. "It is also interesting to look at its application in ."

Explore further: Scientists open a new window into quantum physics with superconductivity in LEDs

More information: R. Ghobadi, et al. "Optomechanical Micro-Macro Entanglement." PRL 112, 080503 (2014). DOI: 10.1103/PhysRevLett.112.080503

add to favorites email to friend print save as pdf

Related Stories

What if quantum physics worked on a macroscopic level?

Jul 25, 2013

Quantum physics concerns a world of infinitely small things. But for years, researchers from the University of Geneva (UNIGE), Switzerland, have been attempting to observe the properties of quantum physics on a larger scale, ...

Quantum cats are hard to see

Dec 16, 2011

Are there parallel universes? And how will we know? This is one of many fascinations people hold about quantum physics. Researchers from the universities of Calgary and Waterloo in Canada and the University ...

Record quantum entanglement of multiple dimensions

Mar 27, 2014

An international team directed by researchers from the Austrian Academy of Sciences, with participation from the Universitat Autònoma de Barcelona, has managed to create an entanglement of 103 dimensions with only two photons. ...

Recommended for you

Quantum mechanics to charge your laptop?

Sep 18, 2014

Top scientists from UC Berkeley and MIT found the expertise they lacked at FIU. They invited Sakhrat Khizroev, a professor with appointments in both medicine and engineering, to help them conduct research ...

Physicists design zero-friction quantum engine

Sep 16, 2014

(Phys.org) —In real physical processes, some energy is always lost any time work is produced. The lost energy almost always occurs due to friction, especially in processes that involve mechanical motion. ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

JIMBO
5 / 5 (5) Apr 16, 2014
As usual, Physorg fails to give the arxiv link for those w/out a Sx to PRL:
http://arxiv.org/...2356.pdf

Any reference to a test of wavefunction collapse due to quantum gravity is reticently relegated to a couple of sentences. Dirk Bouwmeester, a co-author of the paper & colleague of Roger Penrose, who proposed the theory behind grav. collapse of the wavefunction, attempted to do a similar expt. ~ 5 yrs ago, to much media fanfare, which failed. It strains credulity that this test will have a different result.
bearly
1 / 5 (2) Apr 16, 2014
Hopefully this leads to anti-gravity ?
Noumenon
3 / 5 (2) Apr 16, 2014
Decoherence does not 'collapse the wavefunction'.
arom
1 / 5 (1) Apr 17, 2014
To test proposals for quantum gravity-induced wave function collapse, future experiments could be performed that compare the collapse time (estimated to be on the order of microseconds) to the collapse time of environmentally induced decoherence (on the order of milliseconds).
"It is interesting to do the proposed experiment for different masses in order to distinguish the decoherence due to a collapse model from conventional environmentally induced decoherence," said coauthor Christoph Simon, Physics Professor at the University of Calgary.

The problem is that we could not visualize what the wave is, how the collapse process works; understand the mechanism could help the research …
http://www.vacuum...19〈=en