Mapping activation of zygotic genome at high resolution

Mar 06, 2014

Embryonic development is initially controlled by maternal genetic information stored in the egg. LMU researchers now describe a methodology that allows the succeeding activation of the zygotic genome to be mapped at high resolution.

In multicellular organisms, the earliest steps in , which are triggered upon fertilization of the egg, are regulated by RNA molecules transcribed during oogenesis and deposited in the egg cytoplasm. Subsequent activation of the of the embryo is accompanied by the progressive destruction of the maternal RNAs. During this latter phase, which is referred to as the maternal-to-embryonic transition (MET), the embryo contains a mixture of maternal RNAs inherited from the egg cell and RNAs expressed from its own zygotic genome formed by the fusion of the two haploid parental nuclei. "This makes it difficult to determine the precise timepoint and course of embryonic genome activation," says Professor Eckhard Wolf, who holds the Chair of Molecular Animal Breeding and Biotechnology at the LMU's Gene Center.

In collaboration with biochemist Dr. Helmut Blum of the Laboratory for Functional Genome Analysis at the Gene Center, Wolf's group has developed and tested a number of approaches which together enable the pattern of activation of the embryo's genome to be studied in detail. They report the results of their investigations in the latest issue of the Proceedings of the National Academy of Sciences (PNAS).

Timing the activation of 8000 genes

They chose early bovine embryos obtained by in vitro fertilization as a model system for their study. The embryos were derived from a cross between two subspecies of cattle, whose genome sequences differ sufficiently to allow transcripts originating from corresponding gene loci ("alleles") on the paternal and maternal chromosomes to be distinguished. The RNA present in the embryos at various times after fertilization was converted enzymatically into so-called cDNA, which was then analyzed using a high-throughput sequencing platform. This experimental design permitted the researchers to differentiate maternal RNAs stored in the egg from RNAs transcribed from the paternal alleles in the genome of the embryo itself.

The distinction is based on the presence of so-called Single Nucleotide Polymorphisms (SNPs), localized differences between the nucleotide bases present at corresponding positions in the parental genomes inherited by the embryo. By focusing on transcripts that encoded the paternal version of any given sequence, the researchers could determine when and in what temporal order the genes of the embryo were activated.

Most newly transcribed RNAs undergo a series of processing steps, which remove segments of the primary sequence, before the mature RNAs can leave the cell nucleus. So Wolf and his colleagues could also use their sequence data to discriminate between the mature forms of maternal RNA present in the egg cytoplasm and newly synthesized immature RNAs that had not yet left the nucleus. "These two complementary strategies allowed us to determine the timepoints of activation of nearly 8000 zygotic genes during early bovine development," Wolf explains.

The data reported by Blum, Wolf and their colleagues demonstrate how a combination of biotechnological methods and state-of-the-art sequencing procedures can yield new insights into the regulation of early mammalian development. The findings are of particular interest in the context of assisted reproduction techniques, and in cases where the mother suffers from a specific metabolic disorder.

Explore further: New research characterizes novel aspects of maize reproduction

add to favorites email to friend print save as pdf

Related Stories

Parental controls on embryonic development?

Dec 01, 2011

When a sperm fertilizes an egg, each contributes a set of chromosomes to the resulting embryo, which at these very early stages is called a zygote. Early on, zygotic genes are inert, so embryonic development is largely controlled ...

Recommended for you

The origins of polarized nervous systems

10 hours ago

(Phys.org)—There is no mistaking the first action potential you ever fired. It was the one that blocked all the other sperm from stealing your egg. After that, your spikes only got more interesting. Waves ...

New fat cells created quickly, but they don't disappear

15 hours ago

Once fat cells form, they might shrink during weight loss, but they do not disappear, a fact that has derailed many a diet. Yale researchers in the March 2 issue of the journal Nature Cell Biology descri ...

A single target for microRNA regulation

16 hours ago

It has generally been believed that microRNAs control biological processes by simultaneously, though modestly, repressing a large number of genes. But in a study published in Developmental Cell, a group ...

Sizing up cells: Study finds possible regulator of growth

Mar 02, 2015

Modern biology has attained deep knowledge of how cells work, but the mechanisms by which cellular structures assemble and grow to the right size largely remain a mystery. Now, Princeton University researchers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.