Researchers use neutrons, simulations to examine soil carbon

Mar 31, 2014 by Morgan Mccorkle
ORNL researchers used simulations and neutron reflectometry to challenge long-held assumptions in soil science. The team used the magnetism reflectometer instrument shown here at ORNL's Spallation Neutron Source.

(Phys.org) —Carbon dioxide in the atmosphere may get the lion's share of attention in climate change discussions, but the biggest repository of carbon is actually underfoot: soils store an estimated 2.5 trillion tons of carbon in the form of organic matter.

"The combined amount of in vegetation and the atmosphere is only half of the carbon stored in soils," said Melanie Mayes of ORNL's Environmental Sciences Division. "How quickly that carbon moves in and out of soils is one of the big uncertainties in modeling the ."

With an eye on the big picture, Mayes and her colleagues are taking a closer look at carbon by studying nanoscale interactions between and minerals in soil. The team's novel combination of neutron analysis and supercomputer simulations is providing experimental and theoretical data that challenge long-held assumptions in soil science.

"In environmental science, we tend to think about interactions between one organic compound and one soil mineral," Mayes said. "A dissolved organic compound can form a chemical bond with a soil mineral, and that's it."

In recent decades scientists have theorized that organic compounds might instead make bonds with soil minerals and other , resulting in layers of organics on soil minerals. But the new conceptual model has lacked direct experimental verification.

"Our experiments are some of the first to interrogate the structure of layered organic matter−mineral interfaces, in part because there are only a limited number of techniques capable of studying these systems at a nanoscale resolution," said ORNL's Loukas Petridis.

The researchers first used neutron reflectometry at ORNL's Spallation Neutron Source to analyze a representative soil system. Since this neutron technique is sensitive enough to detect nanoscale differences in organic composition, the researchers were able to verify the formation of layers.

The team then simulated the system using molecular dynamics, which revealed the fundamental driving forces behind the molecules' layered formation. Using neutron reflectometry and in tandem was key to the project's success, said Petridis.

"Those two techniques haven't been used together very much, if at all," he said. "We're excited about successfully melding these two techniques to get consistent results."

Gaining insight into soil systems at such a fundamental level not only has implications for carbon cycle models, it could also affect scientists' understanding of related ecosystems. Most models that scientists use to understand soil contamination or fertility, for instance, do not consider the possibility of layered organics residing on soil minerals.

"It changes the whole way we think about how carbon, nutrients and contaminants interact with soils, which therefore affects fertility, water quality and the terrestrial carbon cycle," Petridis said.

The researchers hope to expand upon their initial research by further developing their experimental techniques and applying their analysis to a variety of soil systems.

"We have unique capabilities at ORNL to interrogate and mineral interactions," Mayes said. "Our latest research is an introduction to using these techniques to study a system at a very small scale. Now that we know this method works, we can begin to understand the fundamental principles governing organic carbon storage and reactions in soils."

The results of the team's latest study are published in Environmental Science & Technology.

Explore further: The importance of soil carbon conservation in mitigating global climate change

More information: "Spatial Arrangement of Organic Compounds on a Model Mineral Surface: Implications for Soil Organic Matter Stabilization," Loukas Petridis, Haile Ambaye, Sindhu Jagadamma, S. Michael Kilbey, II, Bradley S. Lokitz, Valeria Lauter, and Melanie A. Mayes, Environmental Science & Technology 2014 48 (1), 79-84

add to favorites email to friend print save as pdf

Related Stories

ORNL researchers improve soil carbon cycling models

Aug 16, 2012

A new carbon cycling model developed at the U.S. Department of Energy's (DOE) Oak Ridge National Laboratory better accounts for the carbon dioxide-releasing activity of microbes in the ground, improving scientists' understanding ...

How does soil store CO2?

Jan 08, 2014

Global CO2 emissions continue to rise—in 2012 alone, 35.7 billion tons of this greenhouse gas entered the atmosphere. Some of it is absorbed by the oceans, plants and soil. They provide a significant reservoir ...

Digging deeper for soil carbon storage

Sep 10, 2013

Many surface soils in Western Australia are already storing as much carbon as they can, according to research at The University of Western Australia and in collaboration with the Department of Agriculture ...

Carbon buried deep in ancient soils

Jun 21, 2013

(Phys.org) —The unearthing of significant carbon stores in deep soils by scientists from the UK and Australia has substantial implications for climate change activities globally.

Recommended for you

'Shocking' underground water loss in US drought

8 hours ago

A major drought across the western United States has sapped underground water resources, posing a greater threat to the water supply than previously understood, scientists said Thursday.

User comments : 0