Researchers develop first single-molecule LED

Feb 03, 2014
Researchers develop first single-molecule LED
Artist impression of electroluminescence in a single polythiophene molecular wire suspended between the tip and the surface of a scanning tunneling microscope. Credit: G. Reecht et al., Phys. Rev. Lett. (2014)

The ultimate challenge in the race to miniaturize light emitting diodes (LED) has now been met: a team led by the Institut de Physique et de Chimie des Matériaux de Strasbourg has developed the first ever single-molecule LED.

The device is formed from a single polythiophene wire placed between the tip of a scanning tunneling microscope and a . It emits light only when the current passes in a certain direction. This experimental tour de force sheds light on the interactions between electrons and photons at the smallest scales. Moreover, it represents yet another step towards creating components for a molecular computer in the future. This work has recently been published in the journal Physical Review Letters.

Light emitting diodes are components that emit light when an electric current passes through them and only let light through in one direction. LEDs play an important role in everyday life, as light indicators. They also have a promising future in the field of lighting, where they are progressively taking over the market. A major advantage of LEDs is that it is possible to make them very small, so point light sources can be obtained. With this in mind, one final miniaturization hurdle has recently been overcome by researchers at IPCMS in Strasbourg, in collaboration with a team from the Institut Parisien de Chimie Moléculaire (CNRS): they have produced the first ever single-molecule LED.

To achieve this, they used a single polythiophene wire. This substance is a good electricity conductor. It is made of hydrogen, carbon and sulfur, and is used to make larger LEDs that are already on the market. The polythiophene wire was attached at one end to the tip of a , and at the other end to a gold surface. The scientists recorded the light emitted when a current passed through this nanowire. They observed that the thiophene wire acts as a : light was only emitted when electrons went from the tip of the microscope towards the gold surface.. When the polarity was reversed, light emission was negligible.

In collaboration with a theoretical team from the Service de Physique de l'Etat Condensé, the researchers showed that this light was emitted when a negative charge (an electron) combined with a positive charge (a hole) in the nanowire and transmitted most of its energy to a photon. For every 100,000 electrons injected into the thiophene wire, a photon was emitted. Its wavelength was in the red range.

From a fundamental viewpoint, this device gives researchers a new tool to probe phenomena that are produced when an electrical conductor emits light and it does so at a scale where quantum physics takes precedence over classical physics. Scientists will also be able to optimize substances to produce more powerful light emissions. Finally, this work is a first step towards making molecule-sized components that combine electronic and optical properties. Similar components could form the basis of a molecular computer.

Explore further: Quantum dots provide complete control of photons

More information: Electroluminescence of a Polythiophene Molecular Wire Suspended between a Metallic Surface and the Tip of a Scanning Tunneling Microscope, Gael Reecht, Fabrice Scheurer, Virginie Speisser, Yannick J. Dappe, Fabrice Mathevet, Guillaume Schull, Article published online on the Physical Review Letters website, January 28, 2014

Related Stories

Quantum dots provide complete control of photons

Jan 31, 2014

By emitting photons from a quantum dot at the top of a micropyramid, researchers at Linköping University are creating a polarized light source for such things as energy-saving computer screens and wiretap-proof ...

Nanowires offer opportunities for improved LEDs

Jul 01, 2011

Researchers from Dutch FOM Institute AMOLF, together with colleagues from Philips Research, Eindhoven University of Technology and Delft University of Technology, have made special nanostructures that could ...

Laser diodes versus LEDs

Nov 11, 2013

Solid-state lighting based on light-emitting diodes (LEDs) is the most efficient source of high color quality white light. Nevertheless, they show significant performance limitations such as the "efficiency ...

Researchers identify cause of LED 'efficiency droop'

Jul 30, 2013

(Phys.org) —Rensselaer Polytechnic Institute researchers have identified the mechanism behind a plague of LED light bulbs: a flaw called "efficiency droop" that causes LEDs to lose up to 20 percent of their ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

22 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

23 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

User comments : 0