Detailed study of living cells challenges classic gene regulation model

Feb 24, 2014 by David Naylor

In all living organisms, genes are regulated by proteins called transcription factors. The established model states that a gene is switched off as long as a repressing transcription factor is bound to the DNA. For the first time ever, researchers at Uppsala University, Sweden, have been able to study the process in living cells, showing that it may be more complex than previously thought.

The study is published in the online edition of Nature Genetics today.

"The relation between transcription factor concentrations and is at the heart of biology since it describes how the concentration of proteins sets the rate of change in protein concentrations. Its position in biology is much like Newton's law of motion in classical physics. Getting this basic relation right is very important for understanding biological systems", says Johan Elf, professor of physical biology at Uppsala University.

Researchers in Johan Elf's group were able to test the relation directly in living cells by measuring both the binding and dissociation rates for a transcription factor to an individual binding site in the bacterial chromosome, and compare those measurements to the independently measured repression of the same gene.

"The assumptions behind the model are so deeply rooted that it may seem like we are measuring the same thing in two different ways", says Johan Elf.

The researchers did however find small but clearly significant differences between the measurements for specific regulatory DNA sequences. This opens a large number of new possibilities for how genes are regulated in living cells.

"One interpretation of our results is that the active transcription initiation keeps the regulatory system out of equilibrium. This is fun because it means that we need to start thinking about gene regulation beyond the simple picture given by equilibrium statistical mechanics", says Dr. Petter Hammar one of the key researchers behind the study.

It is at present unclear how the finding generalizes to other genes and organisms, but the fact that the researchers find interesting deviations in the first system they look at implies that it is not unlikely that it is important in many cases. The single molecule method developed by the Uppsala researchers can be used to explore also these cases.

Explore further: Errant gliding proteins yield long-sought insight

add to favorites email to friend print save as pdf

Related Stories

How proteins find their way on chromosomes

Jun 25, 2012

A research team at Uppsala University has managed to clarify how proteins that regulate the activity of genes quickly find their way on chromosomes among millions of possible binding sites. The study also confirms a more ...

Errant gliding proteins yield long-sought insight

Nov 11, 2013

In order to react effectively to changes in the surroundings, bacteria must be able to quickly turn specific genes on or off. Although the overall mechanisms behind gene regulation have long been known, the fine details have ...

Robust systems persist in response to mutations

Feb 21, 2014

At first glance, robustness and evolvability—two keys to the continued existence of life—look incompatible. Living things need robust genes; otherwise, any mutation could spell death. At the same time, a species needs ...

Genetic switches play big role in human evolution

Jun 12, 2013

(Phys.org) —A Cornell study offers further proof that the divergence of humans from chimpanzees some 4 million to 6 million years ago was profoundly influenced by mutations to DNA sequences that play roles ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0