Tiny acts of microbe justice help reveal how nature fights freeloaders

Jan 06, 2014 by Morgan Kelly
Tiny acts of microbe justice help reveal how nature fights freeloaders
Princeton University researchers discovered that the bacteria Vibrio cholerae keeps food generated by the community's productive members away from those of their kind that attempt to live on others' leftovers. The bacteria use two mechanisms that are likely common among bacteria. In some instances, the natural flow of fluids over the surface of bacterial communities can wash away excess food before the freeloaders can indulge. In microscope images, shiftless V. cholerae (red) were in abundance under conditions of no fluid flow (left image). When the bacteria were grown in an environment with fluid flow -- similar to that found in nature -- cooperative V. cholerae (yellow) won out (right image). Credit: Carey Nadell, Department of Molecular Biology

(Phys.org) —The idea of everyone in a community pitching in is so universal that even bacteria have a system to prevent the layabouts of their kind from enjoying the fruit of others' hard work, Princeton University researchers have discovered.

Groups of the bacteria Vibrio cholerae deny loafers their unjust desserts by keeping the food generated by the community's productive members away from V. cholerae that attempt to live on others' leftover nutrients, the researchers report in the journal Current Biology. The researchers found that individual bacteria produce a thick coating around themselves to prevent nutrients from drifting over to the undeserving. Alternatively, the natural flow of fluids over the surface of bacterial communities can wash away excess food before the freeloaders can indulge.

Likely common among bacteria, this act of microscopic justice not only ensures the survival of the group's most industrious members, but also could be used for agriculture, fuel production and the treatment of bacterial infections such as cholera, explained first author Knut Drescher, a postdoctoral research fellow in the lab of senior author Bonnie Bassler, the Squibb Professor in Molecular Biology and department chair.

By encouraging this action, scientists could increase the efficiency of any process that relies on bacteria to break down organic materials, such as plant materials into biofuels, or cellulose into paper products, Drescher said. For treating a disease, the mechanism could be counteracted to effectively starve the more productive bacteria and weaken the infection.

"We could use our discovery to develop strategies that encourage the proliferation of microbes that digest dead into useful products," Drescher said. "Such an approach will be useful for optimizing nutrient recycling for agriculture, bioremediation, industrial cleanup, or making products for industry or medicine."

Tiny acts of microbe justice help reveal how nature fights freeloaders
All bacteria frequently live in dense communities called biofilms. They secrete enzymes that break down solid organic carbon- and nitrogen-containing molecules and feast on the components within. But not every individual bacterium will produce enzymes -- some will simply feed on what their neighbors produce. The Princeton researchers found that individual bacteria also will produce a thick coating around themselves to prevent nutrients from drifting over to the undeserving. In the thicker biofilms near the top of this microscope image, productive V. cholerae (yellow) overtook exploitive V. cholerae (red). The darker communities indicate thinner biofilms and a proliferation of bacteria that will live off the work of others. Credit: Carey Nadell, Department of Molecular Biology

The Princeton findings also provide insight into how all microbes potentially preserve themselves by imposing fairness and resolving the "public goods dilemma," in which a group must work together while also avoiding exploitation by their self-serving individuals, said co-lead author Carey Nadell, a postdoctoral research associate in Bassler's lab.

"The public goods dilemma is a central problem in the history of life on Earth, during which single cells have emerged as collectives of genes, have emerged as collectives of cells, and societies have emerged as collectives of multicellular organisms," Nadell said.

"At each of these transitions in complexity there has been—and remains—the threat of exploitation by single members pursuing their own interests at the expense of the collective as a whole," Nadell said. "Clarifying how exploitation can be averted is therefore critical to understanding how life has taken the various forms that exist today."

Like all bacteria, V. cholerae—strains of which can cause cholera—frequently lives in dense communities called biofilms. Also like other bacteria, V. cholerae secretes enzymes that break down the solid organic carbon- and nitrogen-containing molecules of which living things are composed so that the bacterium can feast on the components within. But not every individual bacterium will produce enzymes—some will simply feed on what their organic-compound digesting neighbors produce. The researchers found two mechanisms by which this leeching is halted.

The vigilance of V. cholerae and other bacteria may also carry a larger benefit. The nitrogen and carbon that make up most of the planet's breathable air largely come from the digestion of organic materials by .

The researchers studied V. cholerae as it feasted on its preferred victual, chitin, a sugar-based molecule and the central element of many marine cells, exoskeletons and other appendages. The researchers write that sea animals alone shed an estimated 110 billion tons of chitin each year—yet hardly any of it makes it to the ocean floor. Instead, the detritus is consumed by V. cholerae and other with its elements being recycled into the biosphere.

"If V. cholerae's system of extracellular digestion were compromised by exploitation," Nadell said, "the world's supply of carbon and nitrogen would become sequestered on a rapid geological timescale."

Explore further: How plant cell compartments change with cell growth

More information: The paper, "Solutions to the Public Goods Dilemma in Bacterial Biofilms," was published Jan. 4 in the journal Current Biology.

Related Stories

How cholera-causing bacteria respond to pressure

Jun 24, 2013

Cholera remains common in non-industrialized parts of the world today. It persists in part because V. cholera, the bacteria that causes the disease, is able to survive in diverse environments ranging from the intestinal lumen, ...

Researchers work towards pharmacological targets for cholera

Jan 20, 2011

Just over a year after the earthquake in Haiti killed 222,000 people there's a new problem that is killing Haitians. A cholera outbreak has doctors in the area scrambling and the water-borne illness has already claimed 3600 ...

Bacterial gene 'therapy' to combat cholera

Jul 09, 2012

Cholera is an extremely virulent intestinal infection caused by ingestion of the bacterium Vibrio cholerae (V. cholerae). EU researchers elucidated the molecular mechanisms behind expression of virulence genes ...

Recommended for you

How plant cell compartments change with cell growth

20 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

20 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

21 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

21 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

VENDItardE
1 / 5 (1) Jan 06, 2014
even bacteria are smarter than humans