Study finds a 'molecular scaffolding' that maintains skin structure and organisation

Jan 16, 2014
Mutant epidermal stem cells lose the connections to their neighbours (red, right) compared to normal stem cells (red, left). Credit: CNIO

The human body is daily exposed to external assaults such as bacteria, ultraviolet light or chemical agents. Skin, the largest organ of the body, is the first line of defense against these agents. Skin performs this function thanks to the close connections established between its cells (e.g. adherens junctions). The loss of cell adhesion between these cells is related to inflammatory diseases and cancer, hence the special interest in this area of research over the past years.

A study by the Spanish National Cancer Research Centre (CNIO), featured on the cover of the Journal of Cell Biology, shows how interactions between —the cells responsible for the constant renewal of skin—maintain the architecture of this organ. "We knew that these junctions were important in skin stem cells but the cellular components involved in their structure and function were not yet understood", says Mirna Pérez-Moreno, head of the Epithelial Cellular Biology Group that led the study.

Using derived from mice, researchers have discovered that one of the key elements in the formation and stabilisation of these junctions are microtubules, tubular structures that are part of all cells and that serve as pillars to maintain their form and function.

"We have seen for the first time that skin stem-cell microtubules connect with cell-cell junctions to form velcro-like structures that hold the cells together", says Marta Shahbazi, a researcher on Pérez-Moreno's team and the first author of the study.

The connection between these two cellular components—microtubules and cell-cell junctions—occurs via the interaction between the CLASP2 and p120 catenin proteins, linked to microtubules and cell junctions respectively.

"We found that the abscence of CLASP2 or p120 catenin in epidermal caused a loss of their adhesion, and therefore the structure of these cells", says Shahbazi.

"Our results will open up new paths for exploring how these proteins regulate skin physiology", says Pérez-Moreno, adding that this knowledge will be "important for the possible development of future regenerative or anti cancer therapies".

Explore further: Adult stem cells found to suppress cancer while dormant

add to favorites email to friend print save as pdf

Related Stories

Adult stem cells found to suppress cancer while dormant

Dec 20, 2013

Researchers at UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have discovered a mechanism by which certain adult stem cells suppress their ability to initiate skin cancer during their dormant ...

Shining stem cells reveals how our skin is maintained

Aug 15, 2013

All organs in our body rely on stem cells in order to maintain their function. The skin is our largest organ and forms a shield against the environment. New research results from BRIC, University of Copenhagen ...

Recommended for you

Illuminating the dark side of the genome

44 minutes ago

Almost 50 percent of our genome is made up of highly repetitive DNA, which makes it very difficult to be analysed. In fact, repeats are discarded in most genome-wide studies and thus, insights into this part ...

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

User comments : 0