Engineers zap bridges with electricity to test for corrosion

Dec 11, 2013 by Marcene Robinson
UB engineers believe they can detect corrosion in bridges by sending a jolt of electricity between opposite ends of steel cables. A reduction in the strength of the charge would mean the cable is suffering from corrosion.

(Phys.org) —Rust is a civil engineer's nightmare. Motorists in the United States make more than 200 million trips across bridges rated structurally deficient or in need of significant maintenance and yearly inspection. Of the more than 17,000 bridges in New York, 12.5 percent are structurally deficient and 27 percent are considered functionally obsolete. One major culprit: corrosion of reinforcing steel.

Now, however, University at Buffalo researchers believe they can detect corrosion before the damage becomes severe by sending a jolt of electricity between opposite ends of steel cables. A reduction in the strength of the charge would alert them that the cable is suffering from corrosion and the is in danger of failing.

The new technique could do away with time-consuming and expensive visual tests, which often rely on drilling through concrete to inspect the cables or spotting cracks in the concrete caused by increased stress on the weakened wires.

"The No. 1 priority of all civil engineers is the safety of the public," says Tresor Mavinga, a UB senior civil engineering and mathematics major involved in the research. "Corrosion can affect any structure, not just bridges, and we don't want that to happen. We need to be as accurate as possible to save money, time and lives."

Led by Salvatore Salamone, PhD, assistant professor of civil engineering, Mavinga and Alireza Farhidzadeh, a civil engineering graduate student, embedded piezoelectric transducers—devices that convert a signal from one form of energy to another—onto each end of a wire.

They then fired one volt of electricity through the metal using ultrasonic guided waves, which can travel a long distance with little loss in energy, while monitoring the charge received at each end. The experiment was then repeated with the same wire after it was rusted with a saltwater mixture. When cables are corroded, most of the energy from the electrical charge will be lost during the transfer between transducers.

Since the sensors and transducers are permanently attached to the cable, engineers can test the wires remotely off-site.

According to the Federal Highway Administration, problems have increased significantly over the last three decades and are likely to continue. The increase is in part due to the rising use of road de-icing salts, which are extremely corrosive to the protective films on metals.

Improved testing is a needed step toward the improvement of American infrastructure.

U.S. bridges were graded a C-plus by the American Society of Civil Engineers in its 2013 Report Card for America's Infrastructure.

The report adds that one out of nine of the nation's bridges is structurally deficient and that more than 30 percent of bridges have exceeded their 50-year design life; the average age of the nation's bridges is currently 42 years.

Explore further: Accelerated corrosion testing of silver provides clues about performance in atmospheric conditions

Related Stories

Using wireless sensors to monitor bridge safety

Feb 23, 2009

University of Texas (UT) professor, Dean Neikirk, will be field-testing a new bridge monitoring system within the year. The project is a collaboration between industry, government, and academia that will provide ...

The flip side of salting winter roads

Nov 05, 2012

Swedish scientists have studied models to help road and bridge maintenance engineers work out how much damage salting the roads in winter might cause to steel-reinforced concrete structures.

'Talking' to structures to boost public safety

Aug 13, 2013

University of Adelaide researchers are developing low-cost technology which can 'talk' to structures like bridges and aeroplanes to monitor their structural health and assess them for damage.

Recommended for you

Comfortable climate indoors with porous glass

13 hours ago

Proper humidity and temperature play a key role in indoor climate. In the future, establishing a comfortable indoor environment may rely on porous glass incorporated into plaster, as this regulates moisture ...

Crash-testing rivets

14 hours ago

Rivets have to reliably hold the chassis of an automobile together – even if there is a crash. Previously, it was difficult to predict with great precision how much load they could tolerate. A more advanced ...

Customized surface inspection

14 hours ago

The quality control of component surfaces is a complex undertaking. Researchers have engineered a high-precision modular inspection system that can be adapted on a customer-specific basis and integrated into ...

Sensors that improve rail transport safety

14 hours ago

A new kind of human-machine communication is to make it possible to detect damage to rail vehicles before it's too late and service trains only when they need it – all thanks to a cloud-supported, wireless ...

Tiny UAVs and hummingbirds are put to test

Jul 30, 2014

Hummingbirds in nature exhibit expert engineering skills, the only birds capable of sustained hovering. A team from the US, British Columbia, and the Netherlands have completed tests to learn more about the ...

User comments : 0