Flash memory embedded on DDC technology

Dec 10, 2013
Flash memory embedded on DDC technology
Fig.1 FLOTOX Structure

Fujitsu Semiconductor announced that it has developed the world's first technology to produce chips with embedded flash memory on logic circuits fabricated using deeply depleted channel (DDCTM) technology, with the 55nm process at the company's Mie Plant. This makes it possible to consolidate DDC—for low-power operation in a conventional CMOS design—with flash memory, which is non-volatile memory, on a single chip, opening up new possibilities for a wide range of applications, such as the Internet of things. Details of this development will be presented at the IEEE International Electronic Device Meeting (IEDM) 2013, opening December 9 in Washington, DC.

As the Internet of things—in which many kinds of devices are connected to each other via the Internet—becomes more common, there is likely to be a growing demand for devices such as LSIs with built-in sensors for use in . For applications such as these, in addition to the necessary characteristics of low-voltage operation and low power consumption, there is demand for device equipped with , which does not require power for storing sensor data.

Fujitsu Semiconductor licensed technology from SuVolta, Inc., and then worked on co-developing the world's first practical implementation of low-power DDC technology. Production of these chips has already begun at Fujitsu Semiconductor's Mie Plant. Fujitsu Semiconductor has developed a fabrication technology that makes it possible to consolidate DDC transistors on the same chip with floating-gate tunnel oxide (FLOTOX) flash memory.

In FLOTOX flash memory (Figure 1), inserting electrons into a floating gate (program), and extracting electrons from it (erase), are used to represent the 0s and 1s of data. When inserted electrons leak out of the floating gate, it becomes impossible to store data correctly. Indeed, the "single bit charge loss" (SBCL) that can occur after repeated program/erase cycles is the greatest challenge when using this design. It had been thought that steps such as "STI corner rounding" and "tunnel oxide formation" used in FLOTOX fabrication need to be processed at high temperatures (approximately 1,000°C) in order to avoid this failure.

DDC transistors (Figure 2), however, are characterized by the formation of the depleted layer, where dopants are held to very low density, underneath the gate electrode. The use of high-temperature processes is incompatible with the formation and retention of this kind of layer.

Flash memory embedded on DDC technology
Fig.2 DDC Structure

Fujitsu Semiconductor's development team focused on forming FLOTOX using only low-temperature processes. They conducted a complete review, paying close attention to each process along the way, and found that adjustments that would optimize the dopant density distribution in the channel region and source/drain electrodes would result in process conditions that can form FLOTOX structures, while maintaining the characteristics that DDC transistors require. Test chips produced with these new parameters were confirmed to have good initial characteristics for operation and to be free from SBCL failures after repeated program/erase cycles, demonstrating that it is free from reliability problems.

Furthermore, in the course of this optimization work, it was found that the mechanism that produces SBCL is not current stress on the tunnel oxide film, as previously believed, but is dictated by hot hole injection near drains. This new understanding is likely to contribute to further process optimizations in the future.

Fujitsu Semiconductor looks forward to continuing to develop process technologies that strike an ideal balance between functionality, performance, and cost, and to contribute to higher added value in customer products.

Explore further: Fujitsu semiconductor introduces innovative methodology for leading-edge "Customized soC" design

More information: jp.fujitsu.com/group/fsl/downl… lease/20131210-1.pdf

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Ticketfly buying WillCall for on-premise data

just added

Ticketfly Inc., a San Francisco-based technology company among several posing a challenge to Ticketmaster, is acquiring WillCall Inc., a crosstown rival that turns your smartphone into a mobile wallet at live events.

Voice, image give clues in hunt for Foley's killer

16 minutes ago

Police and intelligence services are using image analysis and voice-recognition software, studying social media postings and seeking human tips as they scramble to identify the militant recorded on a video ...

Smartphone-loss anxiety disorder

58 minutes ago

The smart phone has changed our behavior, sometimes for the better as we are now able to connect and engage with many more people than ever before, sometimes for the worse in that we may have become over-reliant on the connectivity ...

For secure software: X-rays instead of passport control

1 hour ago

Trust is good, control is better. This also applies to the security of computer programs. Instead of trusting "identification documents" in the form of certificates, JOANA, the new software analysis tool, examines the source ...

User comments : 0