Fully functional loudspeaker is 3-D printed

Dec 13, 2013 by Anne Ju
Fully functional loudspeaker is 3-D printed
Apoorva Kiran observes the 3-D printer's progress. Credit: Jason Koski/University Photography

(Phys.org) —Cornell researchers have 3-D printed a working loudspeaker, seamlessly integrating the plastic, conductive and magnetic parts, and ready for use almost as soon as it comes out of the printer.

It's an achievement that 3-D printing evangelists feel will soon be the norm; rather than assembling consumer products from parts and components, complete functioning products could be fabricated at once, on demand.

The loudspeaker is a project led by Apoorva Kiran and Robert MacCurdy, graduate students in , who work with Hod Lipson, associate professor of mechanical and aerospace engineering, and a leading 3-D printing innovator.

"Everything is 3-D printed," said Kiran, as he launched a demo by connecting the newly printed mini speaker to amplifier wires. For the demo, the amplifier played a clip from President Barack Obama's State of the Union speech that mentioned 3-D printing.

A loudspeaker is a relatively simple object, Kiran said: It consists of plastic for the housing, a conductive coil and a magnet. The challenge is coming up with a design and the exact materials that can be co-fabricated into a functional shape.

Lipson said he hopes this simple demonstration is just the "tip of the iceberg." 3-D printing technology could be moving from printing passive parts toward printing active, integrated systems, he said.

Fully functional loudspeaker is 3-D printed
Left, the Vail Register, the original telegraph machine that sent the first Morse Code message in 1844. Right, a 3-D printed, working replica that was printed in Hod Lipson's lab in 2009.

But it will be a while before consumers are printing electronics at home, Lipson continued. Most printers cannot efficiently handle multiple materials. It's also difficult to find mutually compatible materials – for example, conductive copper and plastic coming out of the same printer require different temperatures and curing times.

This video is not supported by your browser at this time.
Credit: Cornell University

In the case of the speaker, Kiran used one of the lab's Fab@Homes, a customizable research printer originally developed by Lipson and former graduate student and lab member Evan Malone, that allows scientists to tinker with different cartridges, control software and other parameters. For the conductor, Kiran used a silver ink. For the magnet, he employed the help of Samanvaya Srivastava, graduate student in chemical and biomolecular engineering, to come up with a viscous blend of strontium ferrite.

It's not the first time a consumer electronic device was printed in Lipson's lab. Back in 2009, Malone and former lab member Matthew Alonso printed a working replica of the Vail Register, the famous antique telegraph receiver and recorder that Samuel Morse and Alfred Vail used to send the first Morse code telegraph in 1844.

Alonso, who was an undergraduate at the time, decided to try to print an electromagnetic device, and Lipson suggested the Vail Register – it was an early application of electromagnetism, and, because Ezra Cornell made his fortune in the telegraph industry, it was also central to Cornell history – "kind of poetic," Lipson said.

Fully functional loudspeaker is 3-D printed
Graduate student Apoorva Kiran holds a 3-D printed, fully functional loudspeaker. Credit: Jason Koski/University Photography

After making a detailed digital model of the telegraph, they printed it on a research fabber also developed by Malone that was a predecessor to the Fab@Home. And it worked. As a demo, the researchers received and printed the same message Morse and Vail first did in 1844: "What hath God wrought."

Creating a market for printed electronic devices, Lipson said, could be like introducing color printers after only black and white had existed. "It opens up a whole new space that makes the old look primitive," he said.

Explore further: Solid Concepts 3D prints world's first metal gun (w/ Video)

Related Stories

New file format will help 3-D printing progress

Jul 22, 2011

(PhysOrg.com) -- A newly approved standard for 3-D printing file interchange will greatly enhance 3-D printing capabilities, says Cornell's Hod Lipson, who led the development of the standard.

3-D printers make replicas of cuneiform tablets

May 24, 2011

Today's Assyriology scholars study Sumerian and Babylonian cuneiform tablets with the help of digital photographs or handwritten copies of the texts, but ideally, they visit collections to see the tablets ...

Recommended for you

Large streams of data warn cars, banks and oil drillers

6 hours ago

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Deadbolt
not rated yet Dec 13, 2013
Techno-distributism is ascendant!
kochevnik
not rated yet Dec 13, 2013
So replication arrives before teleportation. The two together will allow quantum copying, where the destruction of the original creates the perfect quantum copy
antialias_physorg
not rated yet Dec 13, 2013
I don't think most people appreciate the paradigm shift that this heralds.
No longer will we assemble things from parts that are forced to fit - and where each seam, joint and meeting of disparate materials is a weakpoint in the overall structure. We well see full integrated objects.

Simple example: Think of printing houses where the walls are made of any waterproof material. Think how conduits (like the entire sanitation system) can be integrated into the structure by just leaving approriate spaces. A design like this can never break or leak (unless you tear the house down). It will never require maintenance or replacement.

More news stories

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Gate for bacterial toxins found

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...