Accelerated corrosion testing of silver provides clues about performance in atmospheric conditions

December 3, 2013
Scanning electron microscope (SEM) images revealed clusters of metallic silver and silver chloride compound. Credit: Courtesy of Fontana Corrosion Center, Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio

Small test strips made of silver or other metals, called "coupons," are frequently used to assess and predict the speeds at which metals used in outdoor environments—pipelines, aircraft, bridges, as well as countless other types of infrastructure and machinery—will succumb to corrosion.

"Silver is commonly used as a coupon, so it's important to understand what controls its rate," explains Gerald Frankel, director of the Fontana Corrosion Center, Department of Materials Science and Engineering, The Ohio State University.

In a paper recently published in Corrosion journal, Frankel and co-author Huang Lin, a graduate research associate at the Fontana Corrosion Center, describe their work delving into accelerated atmospheric corrosion testing of silver in atmospheres containing humidity and ozone, with sodium chloride (salt) surface contamination and ultraviolet (UV) illumination.

By exploring the effects of all of these corrosive parameters on silver coupons in a "home-built" environment chamber, the researchers discovered that ozone, UV, and relative humidity all play significant roles in silver's corrosion rate.

Gaining a deeper understanding of the roles that the individual atmospheric parameters each play in influencing the corrosion rate of metals, such as , will enable the development of new models to better predict atmospheric corrosion rates and, ultimately, performance.

"Our work also involved finding appropriate accelerated lab tests to generate corrosion quickly, and then understanding how the performance of these tests might relate to the performance in real-world atmospheric conditions," Frankel notes.

Next, the researchers plan to study other metals that corrode uniformly, such as copper; and metals that corrode in a localized manner, such as aluminum alloys, painted metals, and galvanically coupled dissimilar metals.

Explore further: Graphene is thinnest known anti-corrosion coating

More information: The paper, "Accelerated Atmospheric Corrosion Testing of Ag," written by Huang Lin and G.S. Frankel, appears in NACE International's journal, CORROSION, Nov. 2013, Vol. 69, No. 11, pp. 1060-1072:

Related Stories

Graphene is thinnest known anti-corrosion coating

February 22, 2012

New research has established the "miracle material" called graphene as the world's thinnest known coating for protecting metals against corrosion. Their study on this potential new use of graphene appears in ACS Nano.

'Poisoning' corrosion brings stainless magnesium closer

August 19, 2013

( —In a discovery that could have major implications for the aerospace, automotive and electronics industries, scientists have found a way to dramatically reduce the corrosion rate of lightweight wonder metal magnesium: ...

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.