New state of liquid crystals discovered

November 29, 2013
Schematics of local director arrangements in nematics. Credit: Nature Communications 4, Article number: 2635 doi:10.1038/ncomms3635

( —New collaborative research, carried out by Dr. Vitaly P. Panov, Research Fellow, and Jagdish K Vij, Honorary Professor of Electronic Materials of Trinity College Dublin's School of Engineering, Department of Electronic Engineering, has found the twist bend nematic phase of liquid crystals (LCs).

The findings, are published in the leading scientific journal Nature Communications. A series of papers published by the group of Professor Vij in Physical Review Letters and Applied Physics Letters with Dr. Panov as first author formed the basis of this fascinating discovery.

The discovery was made possible by international collaboration with two groups of chemists from the United Kingdom – those of Professor Georg Mehl (Hull) and Professor Corrie Imrie (Aberdeen) – and by the groups of Professor Oleg D. Lavrentovich and Professor Antal Jakli at the Liquid Crystal Institute, Kent State University, Ohio, USA.

The work revealed a novel type of liquid crystalline 'nematic phase' called the 'Twist-bend nematic'. Nematic phases are characterised by molecules that have no positional order but which tend to point in the same direction. In the new phase, the molecules start to self-assemble at a nano-level with a pitch, or spacing, of 8 nm, which is thousands of times smaller than the thickness of human hair. These form unusual periodic domains at the macroscopic level when confined in between two specially treated glass plates. The major advantage with this new discovery is that self-assembly into periodic structures is spontaneous, without application of an external electric or magnetic field.

Liquid crystals are a state of matter which possess properties both of liquids (ability to flow) and of solid crystals (order and anisotropy). Because of their unique physical properties liquid crystals are used in the electronic displays of computers, televisions, cell phones and portable gaming devices that have led the ICT revolution.

Researchers are optimistic that the new nematic phase with all its twists and bends will enable new technologies, ranging from faster-switching electro-optical devices such as displays, to biological sensors. It could enable LCs to stay ahead of other competing technologies. The phase already shows some fascinating patterns when viewed under a polarizing microscope and under the action of the electric field.

Explore further: Twisted crystals point way toward active optical materials

More information:

Related Stories

Twisted crystals point way toward active optical materials

September 29, 2011

( -- A nanoscale game of "now you see it, now you don't" may contribute to the creation of metamaterials with useful optical properties that can be actively controlled, according to scientists at Rice University.

Liquid crystal that twists and bends

November 13, 2013

( —New and improved energy efficient digital screens as well as improved TV images could be just some of the benefits of a new discovery in the field of liquid crystals, which chemists from the University of Aberdeen ...

Recommended for you

Light-optics research could improve medical imaging

October 13, 2015

A team of researchers, including The University of Queensland's Dr Joel Carpenter, has developed echo-less lights that could improve medical imaging inside the body, leading to less-intrusive surgery.

Just a touch of skyrmions

October 13, 2015

Ancient memory devices such as handwriting were based on mechanical energy—but in the modern world they have given way to devices based generally on electrical manipulation.

Using optical fiber to generate a two-micron laser

October 9, 2015

Lasers with a wavelength of two microns could move the boundaries of surgery and molecule detection. Researchers at EPFL have managed to generate such lasers using a simple and inexpensive method.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.