New findings could help target the bacteria that cause Lyme disease and syphilis (w/ Video)

Nov 19, 2013

The bacterial pathogens that cause Lyme disease and syphilis are highly invasive. These pathogens, or spirochetes, can invade the central nervous system and, in the case of syphilis, enter the placenta, causing disease in the unborn child. In the November 19 issue of the Biophysical Journal, a Cell Press publication, researchers provide new insights into how these spirochetes penetrate tissue barriers. The findings might be used to develop new treatment strategies to help affected patients or even prevent infections.

"We are one of the few groups that are trying to understand the physical interactions with the environment that make spirochetes such successful pathogens," says senior author Dr. Charles Wolgemuth of the University of Arizona in Tucson. "We've previously understood very little about how these bacteria move through and into our organs, tissues, and central nervous system, but our work sheds light on these processes and could form the basis for novel therapeutics that target the bacterium's ability to invade."

Dr. Wolgemuth and his team, in collaboration with Dr. Justin Radolf at the University of Connecticut Health Center, found that the swimming speeds of the bacteria decrease with increases in the viscosity of their external environment, even though their motors—called flagella—are entirely intracellular. The team then used mathematical modeling to determine how these flagellar motors propel the undulating bacteria forward through viscous fluids. Finally, they fit their simulated data to their experimental data to reveal how external forces affect the movement of the Lyme disease and syphilis spirochetes.

This video is not supported by your browser at this time.
The bacterial pathogens that cause Lyme disease and syphilis are highly invasive. These pathogens, or spirochetes, can invade the central nervous system and, in the case of syphilis, enter the placenta, causing disease in the unborn child. In the Nov. 19 issue of the Biophysical Journal, a Cell Press publication, researchers provide new insights into how these spirochetes penetrate tissue barriers. The findings might be used to develop new treatment strategies to help affected patients or even prevent infections. Credit: Biophysical Journal, Castellano et al

The researchers also showed that both types of spirochetes (syphilis's Treponema pallidum and Lyme disease's Borrelia burgdorferi) respond to changes in viscosity in a similar manner and can be explained by the same biophysical model. "Since the syphilis bacterium cannot be cultured in the lab, our results show that data derived from studying the Lyme disease bacterium is highly informative about the syphilis bacterium and can be used as a 'surrogate' for it," says Dr. Wolgemuth.

Explore further: Syphilis screening and treatment in pregnancy may be cost-effective in sub-Saharan Africa

More information: Biophysical Journal, Castellano et al.: "Viscous Dynamics of Lyme Disease and Syphilis Spirochetes Reveal Flagellar Torque and Drag" dx.doi.org/10.1016/j.bpj.2013.10.004

add to favorites email to friend print save as pdf

Related Stories

Researchers track Lyme disease spirochetes

Jun 20, 2008

Microbiologists at the University of Calgary have demonstrated the first direct visualization of the dissemination of Borrelia burgdorferi, the bacterium that causes Lyme disease. This real-time, three-dimensional look at ...

Understanding the Bacterium that Causes Syphilis

Apr 15, 2010

(PhysOrg.com) -- An article published in this week’s Proceedings of the National Academy of Sciences goes a long way toward improving understanding of the bacterium that causes syphilis and may lead to novel therapeutic approa ...

Lyme disease bacteria take cover in lymph nodes

Jun 16, 2011

The bacteria that cause Lyme disease, one of the most important emerging diseases in the United States, appear to hide out in the lymph nodes, triggering a significant immune response, but one that is not strong enough to ...

Recommended for you

Scientists see how plants optimize their repair

18 hours ago

Researchers led by a Washington State University biologist have found the optimal mechanism by which plants heal the botanical equivalent of a bad sunburn. Their work, published in the Proceedings of the Na ...

Structure of an iron-transport protein revealed

Oct 20, 2014

For the first time, the three dimensional structure of the protein that is essential for iron import into cells, has been elucidated. Biochemists of the University of Zurich have paved the way towards a better ...

User comments : 0