Salmonella sensing system: New approach to detecting food contamination enables real-time testing

October 18, 2013
This is an image of the new sensor. Credit: APL

As anyone who has ever consumed bacteria-contaminated food and experienced "food poisoning" can tell you, it's a miserable experience. Yet it's an all-too-common one, with foodborne illnesses making 1 in 6 Americans—or 48 million people—sick each year. Of these people sickened, 128,000 end up in the hospital, according to the Centers for Disease Control and Prevention, while 3,000 die.

Foodborne illnesses spread easily and, as such, are a difficult-to-control problem—even more so in developing nations. This means that quick detection can play a critical role in halting the spread of contamination. Traditional detection methods, however, tend to be haltingly slow.

Recognizing the need for a real-time biosensing system to detect pathogenic bacteria, such as Salmonella, a team of Auburn University researchers came up with a novel design, which they describe in the American Institute of Physics' Journal of Applied Physics.

What sets this biosensing system apart from traditional detection methods is a design that involves using a magnetoelastic biosensor—a low-cost, wireless acoustic wave sensor platform—combined with a surface-scanning coil detector. The biosensors are coated with a bacteria-specific recognition layer containing particles of "phage," a virus that naturally recognizes bacteria, so that it's capable of detecting specific types of .

Traditional technologies required the sensor to be inside a coil to measure the sensor's signals, said Yating Chai, a doctoral student in Auburn University's materials engineering program.

"The key to our discovery is that measurement of biosensors can now be made 'outside the coil' by using a specially designed microfabricated reading device," he explained.

"In the past, if we were trying to detect whether or not a watermelon was contaminated with Salmonella on the outside of its surface, the sensors would be placed on the watermelon, and then passed through a large surrounding it to read the sensors," Chai says.

By stark contrast, the new system is a handheld device that can be passed over food to determine if its surface is contaminated.

"Now, tests can be carried out in agricultural fields or processing plants in real time—enabling both the and processing plant equipment and all surfaces to be tested for contamination," notes Chai.

Explore further: Biosensing tool to detect salmonella holds promise for preventing common food poisoning

More information: The paper, "Design of a surface-scanning coil detector for direct bacteria detection on food surfaces using a magnetoelastic biosensor," authored by Yating Chai et al., appears in the American Institute of Physics' Journal of Applied Physics. See: dx.doi.org/10.1063/1.4821025

Related Stories

Govt health and safety efforts slowed or halted

October 8, 2013

The government shutdown has slowed or halted federal efforts to protect Americans' health and safety, from probes into the cause of transportation and workplace accidents to tracking the flu. The latest example: investigating ...

Device speeds concentration step in food-pathogen detection

October 14, 2013

(Phys.org) —Researchers have developed a system that concentrates foodborne salmonella and other pathogens faster than conventional methods by using hollow thread-like fibers that filter out the cells, representing a potential ...

Recommended for you

Isolation of Fe(IV) decamethylferrocene salts

August 29, 2016

(Phys.org)—Ferrocene is the model compound that students often learn when they are introduced to organometallic chemistry. It has an iron center that is coordinated to the π electrons in two cyclopentadienyl rings. (C5H5- ...

Bringing artificial enzymes closer to nature

August 29, 2016

Scientists at the University of Basel, ETH Zurich, and NCCR Molecular Systems Engineering have developed an artificial metalloenzyme that catalyses a reaction inside of cells without equivalent in nature. This could be a ...

New method developed for producing some metals

August 25, 2016

The MIT researchers were trying to develop a new battery, but it didn't work out that way. Instead, thanks to an unexpected finding in their lab tests, what they discovered was a whole new way of producing the metal antimony—and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.