Scientists theorize properties of fleeting astatine

September 10, 2013 by Anne Ju
Scientists theorize properties of fleeting astatine
Astatine (element No. 85) is among the world’s rarest elements. A new study theorizes how the element would look and behave were scientists able to observe it in its condensed form. Credit: iStockphoto

Astatine is among the world's rarest elements – with a maximum half-life of just eight hours, found in tiny amounts in natural radioactive decay chains, but also produced by bombarding bismuth with energetic atomic particles. The late Dale Corson, Cornell's eighth president, was one of the discoverers of astatine, synthesizing it for the first time with Kenneth McKenzie and Emilio Segre in 1940.

Yet (element No. 85) also leaves a "curious void" in the Periodic Table of the Elements: Its properties in solid or liquid, or condensed form, are simply unknown, reports a Cornell team in a study by former postdoctoral associate Andreas Hermann that includes physicist Neil Ashcroft and chemist Roald Hoffmann. The new study theorizes how astatine would look and behave were scientists able to make enough of it to touch and observe (although it would be extremely radioactive).

Ashcroft, the Horace White Professor of Physics Emeritus; Hoffmann, the Frank H.T. Rhodes Professor in Humane Letters Emeritus and 1981 Nobel laureate in chemistry; and Hermann, now at the University of Edinburgh's Centre for Science at Extreme Conditions, describe theoretical, condensed astatine in a paper accepted for publication in Physical Review Letters. Their paper was spurred by Corson's groundbreaking discovery.

Condensed astatine, according to electronic property theories, would be monatomic, meaning the atoms do not form molecular pairs; and metallic, making it an unusual addition to the Periodic Table's halogen group.

When other halogens are in condensed form under normal atmospheric pressures, "nothing much really happens to them," said Ashcroft, for they remain in pairs of atoms, as they do in the gas form. But as astatine is condensed, they predict, the pairing comes apart and the element becomes monatomic and simultaneously metallic – a bit like mercury (another chemical curiosity, Hoffmann noted), but not in liquid form.

Scientists have made other halogens metallic by "squeezing," or applying pressure to their molecular structures. But in the Cornell paper, it is reported that astatine requires no squeezing; it becomes metallic the moment it is condensed.

In the 70 years since its discovery by Corson et al., astatine has remained little studied, even though it has some medical applications, but advances in supercomputing and in theories of electronic structure of condensed matter are allowing scientists to make predictions about the fleeting element. They can then study the even more exotic "superheavy" elements further down the Periodic Table, part of a promised "island of stability" of long-lived, non-decaying elements, Ashcroft noted.

The largest amount of astatine ever created is 0.05 micrograms – not very much at all, Hoffmann said, though that it is still around 140,000 billion atoms. He, Ashcroft, and others plan to keep exploring some of the fundamental mysteries in the Periodic Table.

"It's just sheer fun," Hoffmann said.

The research to be published under the title "Condensed Astatine: Monatomic and Metallic" was supported by the National Science Foundation and the U.S. Department of Energy.

Explore further: For Future Superconductors, a Little Bit of Lithium May Do Hydrogen a Lot of Good

Related Stories

Nobel laureate puts the squeeze on hydrogen

October 14, 2011

Hydrogen, normally a gas, may act like a metal when squeezed under extreme pressure. In that state, competing chemical and physical effects determine its properties, said Nobel laureate Roald Hoffmann, Cornell's Frank H.T. ...

Recommended for you

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (8) Sep 10, 2013
What's the name of the next element ? Asinine ?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.