Finding could potentially make iPS cells safer for use in humans

Sep 09, 2013 by Krista Conger

Induced pluripotent stem cells, or iPS cells, are a hot commodity right now in biology.

The cells, which are created when non-stem cells are reprogrammed to resemble embryonic stem cells, have many potential uses in therapy and drug development. They're usually created by using a virus to add just four genes (selected because they are highly expressed in embryonic stem cells) to the cell to be reprogrammed.

However, a molecular understanding of the transformation process is largely lacking, and the expression of one of the , called c-Myc, is frequently elevated in human cancers. This has given researchers and clinicians pause when considering the use of iPS cells in humans.

Now researchers in the laboratory of Helen Blau, PhD, the Donald E. and Delia B. Baxter Professor, have found a replacement for c-Myc. They did so by fusing mouse with a human skin cell, or fibroblast, to create a bi-species product, called a heterokaryon, with a 3:1 nuclear ratio, skewed toward the . This ratio shifts the balance of to favor and turns out be an excellent way to study the earliest steps of reprogramming. That's because factors in the developmentally flexible stem reprogram the more-staid skin cell nucleus quickly and efficiently, giving researchers a ring-side seat to the intricate transformation process.

The vast majority of heterokaryons reprogram. This is in stark contrast with the only about one in every 1,000 would-be iPS cells that ever complete their transformation to pluripotency: a pretty uninformative show if you pick the wrong cell to follow.

"Studying these heterokaryons gives us a molecular snapshot of pluripotency that would otherwise have been missed and allows us to capture reprogramming in action," Blau said. "For the first time, we're able to identify critically important transient regulators that would be totally missed by current methods of study."

Blau is the senior author of the research, which was published Sept. 1 in Nature Cell Biology. Postdoctoral scholar Jennifer Brady, PhD, is the lead author.

As Blau predicted, the study of the heterokaryons paid off. The researchers found that a signaling molecule called IL-6 is turned on and highly expressed in the human fibroblast nucleus during the first few hours of reprogramming in the fused cells. This gave them an important clue, and they were then able to show that during the creation of iPS cells, temporary exposure to IL-6 can replace c-Myc.

The iPS cells created without c-Myc should be safer to use in human therapies. But this is just the tip of the iceberg. Much more can be learned from the heterokaryon model, Blau said.

"This method provides insights into the logic and timing of the reprogramming process that would not be possible by any other means," she said. "Really understanding this process is vital to getting safer and more efficient reprogramming to make iPS cells."

Explore further: Researchers discover new strategy germs use to invade cells

More information: Early role for IL-6 signalling during generation of induced pluripotent stem cells revealed by heterokaryon RNA-Seq, DOI: 10.1038/ncb2835

Related Stories

Recommended for you

Researchers discover new strategy germs use to invade cells

32 minutes ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

52 minutes ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

22 hours ago

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

23 hours ago

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

23 hours ago

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Soylent_Grin
not rated yet Sep 09, 2013
They're usually created by using a virus to add just four genes (selected because they are highly expressed in embryonic stem cells) to the cell to be reprogrammed.


Why aren't they using the CAS9 techniques?