New low-temperature chemical reaction explained

Sep 04, 2013 by David Chandler
Diagram illustrates the newly-discovered reaction that transforms molecules of ketohydroperoxide into acids and carbonyl molecules, after going through intermediate stages. Credit: Jalan et al

In all the centuries that humans have studied chemical reactions, just 36 basic types of reactions have been found. Now, thanks to the work of researchers at MIT and the University of Minnesota, a 37th type of reaction can be added to the list.

The newly explained reaction—whose basic outlines had been known for three decades, but whose workings had never been understood in detail—is an important part of atmospheric reactions that lead to the formation of climate-affecting ; that may be important for ; and combustion reactions in engines.

The new analysis is explained in a paper by MIT graduate student Amrit Jalan, chemical engineering professor William Green, and six other researchers, published in the Journal of the American Chemical Society.

The reaction's details sound esoteric: a low-temperature oxidation that results in the decomposition of known as gamma-ketohydroperoxides. When he first described the reaction in the scientific literature 30 years ago, Stefan Korcek of the Ford Motor Company proposed a hypothesis for how the reaction might take place. The new work shows that Korcek had the right concept, although some details differ from his predictions.

The original discovery was the result of analyzing how engine oils break down through oxidation—part of an attempt to produce oils that would last longer. That's important, Green points out, since is among the largest hazardous waste streams in the United States.

In analyzing the problem, Korcek realized that "there were fundamental things about the way even simple hydrocarbons react with oxygen that we didn't understand," Green says. By examining the products of the reaction, which included and , Korcek outlined an unusually complex multipart reaction. But for the next three decades, nobody found a way to verify whether the reaction or the steps he outlined could work.

Jalan says that the MIT researchers' analysis came about almost by accident. "I was looking at that paper for a different study," he says, "and I came across [Korcek's] work, which hadn't been verified either theoretically or experimentally. … [We] decided to see if we could explain his observations by throwing quantum mechanical tools at the problem."

In collaboration with the Minnesota researchers—including Donald Truhlar, a co-author of the new paper and a leading expert in such calculations—Jalan and Green were able to demonstrate exactly why the reaction works as it does. But they also found that part of the process must differ slightly from Korcek's original hypothesis.

Green says that understanding how this "very important reaction" works could be significant in several fields. The researchers' initial impetus was, in part, a colleague's exploration of biofuel combustion. The new understanding of the degradation that can take place as different fuels oxidize—sometimes producing toxic or corrosive byproducts—could help narrow the choice of fuel types to pursue, he says.

The process is also related to oxidations that take place in the body, contributing to the tissue damage and aging that antioxidant vitamins seek to combat, Green says.

Green points out that because this is an entirely new type of reaction, it opens the door to research on other variations. "Once you discover a new type of reaction, there must be many similar ones," he says.

"It's very odd to have so many reactions at once in such a small molecule," Green adds. "Now that we know that can happen, we're searching for other cases."

Anthony Dean, dean of the College of Applied Science and Engineering at the Colorado School of Mines, who was not involved in this work, says, "A particularly nice aspect of this work is to then consider how this finding might be applicable to other systems. In a broader context, this combined effort by two very prominent research groups illustrates the power and potential for electronic structure calculations [in] quantitatively important problems in chemical kinetics."

Klippenstein adds, "As a result of this clear exposition and the high level of theory that was applied, I believe this work will be widely accepted immediately. I certainly am already convinced by their conclusions."

Explore further: Spinach could lead to alternative energy more powerful than Popeye

More information: New Pathways for Formation of Acids and Carbonyl Products in Low-Temperature Oxidation: The Korcek Decomposition of ?-Ketohydroperoxides, pubs.acs.org/doi/pdf/10.1021/ja4034439

Related Stories

Build­ing mol­e­cules: Serendipity pays off

Apr 01, 2013

Serendipity – the act of finding something good or useful while not specifically searching for it – can sometimes pay off. Now Princeton University chemistry researchers report that this non-specific ...

Non-equilibrium quantum states in atmospheric chemistry

Sep 03, 2012

(Phys.org)—Research that sheds new light on the microscopic chemical physics driving one of the most important reaction sequences in atmospheric chemistry is published in Science today by Dr David Glowac ...

Recommended for you

A new approach to creating organic zeolites

14 hours ago

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

A tree may have the answers to renewable energy

Jul 23, 2014

Through an energy conversion process that mimics that of a tree, a University of Wisconsin-Madison materials scientist is making strides in renewable energy technologies for producing hydrogen.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Jeddy_Mctedder
1.8 / 5 (10) Sep 04, 2013
36 types of chemical reactions? care to share a link to back this up?
verkle
1.9 / 5 (9) Sep 04, 2013
36 types of chemical reactions? care to share a link to back this up?


Can't find any, either...