Project to develop intelligent and wearable body exoskeleton

September 11, 2013

The Fraunhofer Institute for Industrial Engineering IAO is partner in the Robo-Mate project, starting in September 2013. Together with 11 European partners this research project aims at designing a human-guided exoskeleton to improve work safety and enhance productivity in the industrial environment.

Various manual work tasks necessary to processes are difficult to automate – even today – due to their complexity. This is particularly the case in assembling and dismantling operations, such as those used in the automotive or food processing industries. This type of work, however, entails severe risks of injury. According to the Work Foundation Alliance (UK), as many as 44 million workers in the European Union are affected by work-place related musculoskeletal disorders (MSDs), representing a total annual cost of more than 240 billion Euros. To overcome these industrial and societal challenges, a new , called Robo-Mate, has been designed.

Set to get underway in September 2013, the objective of the Robo-Mate project is to develop an intelligent, easy-to-manoeuvre, and wearable body for manual-handling work. The project comprises 12 partners from 7 European countries, including key players from industry and academia. The fundamental idea behind Robo-Mate is to enhance work conditions for load workers and facilitate repetitive lifting tasks, thereby reducing the incidence of work-place related injury and disease. As a consequence, productivity, flexibility and the quality of production will increase. Bringing this concept to fruition involves merging human-guided manipulators with computer-controlled in order to create a human-guided and computer-supported exoskeleton for use in various industries.

The development includes modelling and simulating the exoskeleton in a virtual-factory environment at the Fraunhofer Institute for Industrial Engineering IAO. Demonstrations of the prototype will be held at INDRA SAS – a French company in the vehicle recycling sector – and COMPA S. A. – a Romanian automotive components manufacturer. The Centro Ricerche Fiat (CRF) will test the exoskeleton in their lab and on the Fiat shop floor.

Putting the Robo-Mate exoskeleton into service will engender practical and far-reaching impacts, including making the industrial work-site safer for skilled personnel, providing a means for workers to apply less physical effort, and facilitating higher-quality outputs resulting in industrial benefit.

Explore further: Disabled Japanese man begins robo-suit adventure

Related Stories

Closing the water cycle

September 5, 2013

Combining advanced wastewater treatment technologies may enable industrial companies to use water in a more sustainable way. But the approaches are mainly suited for high-income countries.

Revolutionising European machine tools

September 9, 2013

From lathes and shapers to cutting and grinding machines, machine tools helped put Europe at the forefront of manufacturing in the past and remain essential to many industries, including aerospace, automotive, power generation ...

Recommended for you

Team develops targeted drug delivery to lung

September 2, 2015

Researchers from Columbia Engineering and Columbia University Medical Center (CUMC) have developed a new method that can target delivery of very small volumes of drugs into the lung. Their approach, in which micro-liters ...

Not another new phone! But Nextbit's Robin is smarter

September 2, 2015

San Francisco-based Nextbit wants you to meet Robin, which they consider as the smarter smartphone. Their premise is that no one is making a smart smartphone; when you get so big it's hard to see the forest through the trees. ...

Team creates functional ultrathin solar cells

August 27, 2015

(Phys.org)—A team of researchers with Johannes Kepler University Linz in Austria has developed an ultrathin solar cell for use in lightweight and flexible applications. In their paper published in the journal Nature Materials, ...

Magnetic fields provide a new way to communicate wirelessly

September 1, 2015

Electrical engineers at the University of California, San Diego demonstrated a new wireless communication technique that works by sending magnetic signals through the human body. The new technology could offer a lower power ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.